Suppr超能文献

与 ER+/HER2- 乳腺癌内分泌治疗耐药相关的候选甲基化位点。

Candidate methylation sites associated with endocrine therapy resistance in ER+/HER2- breast cancer.

机构信息

Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health research institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.

Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

出版信息

BMC Cancer. 2020 Jul 19;20(1):676. doi: 10.1186/s12885-020-07100-z.

Abstract

BACKGROUND

Estrogen receptor (ER) positive breast cancer is often effectively treated with drugs that inhibit ER signaling, i.e., tamoxifen (TAM) and aromatase inhibitors (AIs). However, 30% of ER+ breast cancer patients develop resistance to therapy leading to tumour recurrence. Changes in the methylation profile have been implicated as one of the mechanisms through which therapy resistance develops. Therefore, we aimed to identify methylation loci associated with endocrine therapy resistance.

METHODS

We used genome-wide DNA methylation profiles of primary ER+/HER2- tumours from The Cancer Genome Atlas in combination with curated data on survival and treatment to predict development of endocrine resistance. Association of individual DNA methylation markers with survival was assessed using Cox proportional hazards models in a cohort of ER+/HER2- tumours (N = 552) and two sub-cohorts corresponding to the endocrine treatment (AI or TAM) that patients received (N = 210 and N = 172, respectively). We also identified multivariable methylation signatures associated with survival using Cox proportional hazards models with elastic net regularization. Individual markers and multivariable signatures were compared with DNA methylation profiles generated in a time course experiment using the T47D ER+ breast cancer cell line treated with tamoxifen or deprived from estrogen.

RESULTS

We identified 134, 5 and 1 CpGs for which DNA methylation is significantly associated with survival in the ER+/HER2-, TAM and AI cohorts respectively. Multi-locus signatures consisted of 203, 36 and 178 CpGs and showed a large overlap with the corresponding single-locus signatures. The methylation signatures were associated with survival independently of tumour stage, age, AI treatment, and luminal status. The single-locus signature for the TAM cohort was conserved among the loci that were differentially methylated in endocrine-resistant T47D cells. Similarly, multi-locus signatures for the ER+/HER2- and AI cohorts were conserved in endocrine-resistant T47D cells. Also at the gene set level, several sets related to endocrine therapy and resistance were enriched in both survival and T47D signatures.

CONCLUSIONS

We identified individual and multivariable DNA methylation markers associated with therapy resistance independently of luminal status. Our results suggest that these markers identified from primary tumours prior to endocrine treatment are associated with development of endocrine resistance.

摘要

背景

雌激素受体(ER)阳性乳腺癌通常可以通过抑制 ER 信号的药物有效治疗,即他莫昔芬(TAM)和芳香酶抑制剂(AIs)。然而,30%的 ER+乳腺癌患者对治疗产生耐药性,导致肿瘤复发。甲基化谱的变化已被认为是耐药性发展的机制之一。因此,我们旨在确定与内分泌治疗耐药性相关的甲基化位点。

方法

我们使用癌症基因组图谱中的原发性 ER+/HER2-肿瘤的全基因组 DNA 甲基化谱,结合生存和治疗的精选数据,以预测内分泌耐药性的发展。使用 Cox 比例风险模型评估单个 DNA 甲基化标志物与生存的相关性,该模型在 ER+/HER2-肿瘤队列(N=552)和患者接受的内分泌治疗(AI 或 TAM)的两个亚队列(N=210 和 N=172)中进行了评估。我们还使用 Cox 比例风险模型与弹性网络正则化,识别与生存相关的多变量甲基化特征。使用 T47D ER+乳腺癌细胞系用他莫昔芬或剥夺雌激素处理的时间过程实验生成的 DNA 甲基化图谱,比较了单个标志物和多变量特征。

结果

我们分别在 ER+/HER2-、TAM 和 AI 队列中鉴定出与生存显著相关的 134、5 和 1 个 CpG。多基因特征由 203、36 和 178 个 CpG 组成,与相应的单基因特征有很大重叠。甲基化特征与生存相关,与肿瘤分期、年龄、AI 治疗和腔状态无关。TAM 队列中的单基因特征在 T47D 内分泌耐药细胞中差异甲基化的基因座中是保守的。同样,ER+/HER2-和 AI 队列的多基因特征在 T47D 内分泌耐药细胞中是保守的。同样,在基因集水平上,与内分泌治疗和耐药性相关的多个基因集在生存和 T47D 特征中都得到了富集。

结论

我们鉴定了与 luminal 状态无关的与治疗耐药性相关的个体和多变量 DNA 甲基化标志物。我们的结果表明,这些在接受内分泌治疗之前从原发性肿瘤中鉴定出的标志物与内分泌耐药的发展相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc91/7368985/98429dbcd228/12885_2020_7100_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验