Suppr超能文献

分析瑞士国家森林清查中木本物种丰富度测量的质量。

Analysing the quality of Swiss National Forest Inventory measurements of woody species richness.

作者信息

Traub Berthold, Wüest Rafael O

机构信息

Scientific Service NFI, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.

Spatial Evolutionary Ecology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.

出版信息

For Ecosyst. 2020;7(1):37. doi: 10.1186/s40663-020-00252-1. Epub 2020 Jun 17.

Abstract

BACKGROUND

Under ongoing climate and land-use change, biodiversity is continuously decreasing and monitoring biodiversity is becoming increasingly important. National Forest Inventory (NFI) programmes provide valuable time-series data on biodiversity and thus contribute to assessments of the state and trends in biodiversity, as well as ecosystem functioning. Data quality in this context is of paramount relevance, particularly for ensuring a meaningful interpretation of changes. The Swiss NFI revisits about 8%-10% of its sample plots regularly in repeat surveys to supervise the quality of fieldwork.

METHODS

We analysed the relevance of observer bias with equivalence tests, examined data quality objectives defined by the Swiss NFI instructors, and calculated the pseudo-turnover (PT) of species composition, that is, the percentage of species not observed by both teams. Three attributes of woody species richness from the latest Swiss NFI cycles (3 and 4) were analysed: occurrence of small tree and shrub species (1) on the sample plot and (2) at the forest edge, and (3) main shrub and trees species in the upper storey.

RESULTS

We found equivalent results between regular and repeat surveys for all attributes. Data quality, however, was significantly below expectations in all cases, that is, as much as 20%-30% below the expected data quality limit of 70%-80% (proportion of observations that should not deviate from a predefined threshold). PT values were about 10%-20%, and the PT of two out of three attributes decreased significantly in NFI4. This type of uncertainty - typically caused by a mixture of overlooking and misidentifying species - should be considered carefully when interpreting change figures on species richness estimates from NFI data.

CONCLUSIONS

Our results provide important information on the data quality achieved in Swiss NFIs in terms of the reproducibility of the collected data. The three applied approaches proved to be effective for evaluating the quality of plot-level species richness and composition data in forest inventories and other biodiversity monitoring programmes. As such, they could also be recommended for assessing the quality of biodiversity indices derived from monitoring data.

摘要

背景

在持续的气候和土地利用变化下,生物多样性不断减少,监测生物多样性变得越来越重要。国家森林资源清查(NFI)计划提供了有关生物多样性的宝贵时间序列数据,从而有助于评估生物多样性的现状和趋势以及生态系统功能。在此背景下,数据质量至关重要,特别是对于确保对变化进行有意义的解释。瑞士NFI定期在重复调查中重新访问其约8%-10%的样地,以监督野外工作的质量。

方法

我们用等效性检验分析了观测者偏差的相关性,检查了瑞士NFI教员定义的数据质量目标,并计算了物种组成的伪周转率(PT),即两个团队均未观测到的物种百分比。分析了瑞士NFI最新周期(3和4)中木本物种丰富度的三个属性:(1)样地上小树和灌木物种的出现情况,(2)森林边缘的出现情况,以及(3)上层的主要灌木和树木物种。

结果

我们发现所有属性在常规调查和重复调查之间的结果相当。然而,在所有情况下数据质量均显著低于预期,即比预期的数据质量下限70%-80%(不应偏离预定义阈值的观测比例)低20%-30%。PT值约为10%-20%,并且在NFI4中三个属性中的两个的PT显著下降。在解释来自NFI数据的物种丰富度估计的变化数字时,应仔细考虑这种通常由物种遗漏和误识别混合导致的不确定性类型。

结论

我们的结果提供了关于瑞士NFI在收集数据的可重复性方面所达到的数据质量的重要信息。所应用的三种方法被证明对于评估森林清查和其他生物多样性监测计划中样地水平物种丰富度和组成数据的质量是有效的。因此,它们也可被推荐用于评估从监测数据得出的生物多样性指数的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3882/7357775/df41b2f6637c/40663_2020_252_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验