Suppr超能文献

利用空间信息技术绘制耕作实践图

Mapping Tillage Practices Using Spatial Information Techniques.

作者信息

Obade Vincent de Paul, Gaya Charles

机构信息

BioResource and Agricultural Engineering Department, Cal Poly San Luis Obispo, 1 Grand Avenue, San Diego, CA, USA.

Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.

出版信息

Environ Manage. 2020 Oct;66(4):722-731. doi: 10.1007/s00267-020-01335-z. Epub 2020 Jul 19.

Abstract

Monitoring tillage practices is important for explaining soil quality and yield trends, and their impact on environmental quality. However, a common problem in sustainable residue management is scarcity of accurate residue maps. Because predictive insights on soil quality dynamics across a spatial domain are vital, this entry explicates on a new remote sensing-based technique for assessing surface residue cover. Here, an empirical model for mapping surface residue cover was created by integrating line-transect % residue cover field measurements with information gleaned from ground spectroradiometers and Advanced Wide-Field Sensor (AWiFS) satellite imagery. This map was validated using non-photosynthetic vegetation (NPV) fractional component extracted by spectral mixture analysis (SMA). SMA extracts fractional components of sensed signals in imagery, which within agricultural fields are NPV, green vegetation, bare soil, and shade. A stepwise linear regression between residue estimates by line transect and map generated using satellite imagery had R = 87%. Upon map categorization according to surface residue for a single AWiFS imagery encompassing an area of 836,868 ha, but focused on corn (Zea mays) fields within South Dakota, revealed that <4% of these corn fields had >15% surface residue cover left in the field by November 2009. Findings such as these may guide policy on soil quality, which is directly correlated with residue management. In the future, the spatial distribution of surface residues remaining after harvest in field planted with other crops and other seasons will be mapped. Besides, the efficacy of integrating hyperspectral sensor data to enhance accuracy will be investigated.

摘要

监测耕作方式对于解释土壤质量和产量趋势及其对环境质量的影响至关重要。然而,可持续残茬管理中的一个常见问题是缺乏准确的残茬地图。由于对空间域内土壤质量动态的预测性见解至关重要,本文阐述了一种基于遥感的评估地表残茬覆盖的新技术。在此,通过将线状样带残茬覆盖百分比实地测量与从地面光谱辐射计和高级宽视场传感器(AWiFS)卫星图像中获取的信息相结合,创建了一个用于绘制地表残茬覆盖的经验模型。该地图使用通过光谱混合分析(SMA)提取的非光合植被(NPV)分数成分进行了验证。SMA提取图像中感测信号的分数成分,在农田中这些成分是NPV、绿色植被、裸土和阴影。线状样带残茬估计值与使用卫星图像生成的地图之间的逐步线性回归的R值为87%。根据2009年11月时南达科他州一片面积为836,868公顷但以玉米(Zea mays)田为重点的单一AWiFS图像的地表残茬对地图进行分类,结果显示,这些玉米田中<4%的田地在2009年11月时地表残茬覆盖率>15%。诸如此类的研究结果可能会指导与残茬管理直接相关的土壤质量政策。未来,将绘制种植其他作物的田地在其他季节收获后剩余的地表残茬的空间分布。此外,还将研究整合高光谱传感器数据以提高准确性的效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验