Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.
J Clin Oncol. 2020 Sep 20;38(27):3107-3118. doi: 10.1200/JCO.20.00461. Epub 2020 Jul 20.
Multiple myeloma (MM) is accompanied by heterogeneous somatic alterations. The overall goal of this study was to describe the genomic landscape of myeloma using deep whole-genome sequencing (WGS) and develop a model that identifies patients with long survival.
We analyzed deep WGS data from 183 newly diagnosed patients with MM treated with lenalidomide, bortezomib, and dexamethasone (RVD) alone or RVD + autologous stem cell transplant (ASCT) in the IFM/DFCI 2009 study (ClinicalTrials.gov identifier: NCT01191060). We integrated genomic markers with clinical data.
We report significant variability in mutational load and processes within MM subgroups. The timeline of observed activation of mutational processes provides the basis for 2 distinct models of acquisition of mutational changes detected at the time of diagnosis of myeloma. Virtually all MM subgroups have activated DNA repair-associated signature as a prominent late mutational process, whereas APOBEC signature targeting C>G is activated in the intermediate phase of disease progression in high-risk MM. Importantly, we identify a genomically defined MM subgroup (17% of newly diagnosed patients) with low DNA damage (low genomic scar score with chromosome 9 gain) and a superior outcome (100% overall survival at 69 months), which was validated in a large independent cohort. This subgroup allowed us to distinguish patients with low- and high-risk hyperdiploid MM and identify patients with prolongation of progression-free survival. Genomic characteristics of this subgroup included lower mutational load with significant contribution from age-related mutations as well as frequent mutation. Surprisingly, their overall survival was independent of International Staging System and minimal residual disease status.
This is a comprehensive study identifying genomic markers of a good-risk group with prolonged survival. Identification of this patient subgroup will affect future therapeutic algorithms and research planning.
多发性骨髓瘤(MM)伴有异质性体细胞改变。本研究的总体目标是使用深度全基因组测序(WGS)描述骨髓瘤的基因组图谱,并开发一种识别具有长生存时间患者的模型。
我们分析了来自 183 例新诊断的 MM 患者的深度 WGS 数据,这些患者在 IFM/DFCI 2009 研究中接受来那度胺、硼替佐米和地塞米松(RVD)单独或 RVD+自体干细胞移植(ASCT)治疗(ClinicalTrials.gov 标识符:NCT01191060)。我们将基因组标记与临床数据相结合。
我们报告了 MM 亚组中突变负荷和过程的显著变异性。观察到的突变过程的时间线为在 MM 诊断时检测到的突变变化的两种不同获得模型提供了基础。几乎所有 MM 亚组都具有激活的与 DNA 修复相关的特征作为突出的晚期突变过程,而 APOBEC 靶向 C>G 的特征在高危 MM 的疾病进展的中间阶段被激活。重要的是,我们确定了一个基因组定义的 MM 亚组(新诊断患者的 17%),具有低 DNA 损伤(染色体 9 获得的低基因组疤痕评分)和良好的结果(69 个月时 100%的总生存率),在一个大型独立队列中得到验证。该亚组使我们能够区分低风险和高风险高倍体 MM 患者,并识别出无进展生存期延长的患者。该亚组的基因组特征包括较低的突变负荷,其主要来源于与年龄相关的突变,以及频繁的突变。令人惊讶的是,他们的总生存率与国际分期系统和微小残留疾病状态无关。
这是一项全面的研究,确定了具有延长生存时间的良好风险组的基因组标记。该患者亚组的鉴定将影响未来的治疗方案和研究计划。