Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh 160030, India.
Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh 160030, India.
J Photochem Photobiol B. 2020 Sep;210:111960. doi: 10.1016/j.jphotobiol.2020.111960. Epub 2020 Jul 14.
Nanotechnology driven cancer theranostics hold potential as promising future clinical modalities. Currently, there is a strong emphasis on the development of combinational modalities, especially for cancer treatment. In this study, we present a topical hydrogel patch for nanomaterial-assisted photothermal therapeutics as well as for on-demand drug delivery application. The patch was derived from interpenetrating networks (IPNs) of alginate (Alg) and polyacrylamide (PAAm) in weight ratio 8:1 by free radical polymerization. The patch interiors were composed of hybrid nanostructures derived from gold nanorods (AuNRs) anchored onto polyvinylpyrrolidone (PVP) functionalized graphene oxide (PVP-nGO) to form PVP-nGO@AuNRs hybrids. Field emission scanning electron microscopy (FE-SEM) images revealed the porous nature of the hybrid hydrogel patch with an average pore size of ~28.60 ± 3.10 μm. Besides, functional characteristics of the hybrid patch, such as mechanical strength, viscoelastic and swelling behavior, were investigated. Under near-infrared (NIR) radiation exposure, the hybrid patch exhibited photothermal properties such as surface temperature rise to 75.16 ± 0.32 °C, sufficient to ablate cancer cells thermally. Besides, the heat generated in the hybrid patch could be transmitted to an underlying hydrogel (mimicking skin tissue) when stacked together without much loss. Under cyclic photothermal heating, the patch could retain its photothermal stability for four cycles. Furthermore, the hybrid patch demonstrated NIR stimulated drug release, which was evaluated using methotrexate (MTX, water-insoluble anticancer drug) and rhodamine B (RhB, water-soluble dye). Taken together, this work provides a new dimension towards the development of externally placed hydrogel patches for thermal destruction of localized solid tumors and tunable delivery of chemotherapeutic drugs at the target site.
基于纳米技术的癌症治疗学具有成为有前途的未来临床模式的潜力。目前,人们强烈关注开发组合模式,特别是用于癌症治疗。在这项研究中,我们提出了一种用于纳米材料辅助光热治疗以及按需药物输送应用的局部水凝胶贴剂。该贴剂由通过自由基聚合以 8:1 的重量比的藻酸盐(Alg)和聚丙烯酰胺(PAAm)的互穿网络(IPN)衍生而来。贴片内部由金纳米棒(AuNRs)锚定在聚乙烯吡咯烷酮(PVP)功能化氧化石墨烯(PVP-nGO)上形成的混合纳米结构组成,以形成 PVP-nGO@AuNRs 杂化。场发射扫描电子显微镜(FE-SEM)图像显示了具有约 28.60±3.10μm 的平均孔径的多孔混合水凝胶贴片的性质。此外,还研究了混合贴片的功能特性,例如机械强度,粘弹性和溶胀行为。在近红外(NIR)辐射下,混合贴片表现出光热性能,例如表面温度升高至 75.16±0.32°C,足以通过热消融杀死癌细胞。此外,当堆叠在一起时,混合贴片产生的热量可以传递到下面的水凝胶(模拟皮肤组织)而不会损失太多。在循环光热加热下,贴片可以保持其光热稳定性四个循环。此外,混合贴片显示出近红外刺激的药物释放,这是通过使用甲氨蝶呤(MTX,水溶性抗癌药物)和罗丹明 B(RhB,水溶性染料)进行评估的。综上所述,这项工作为开发用于局部实体瘤热破坏和目标部位化学治疗药物的可调输送的外部放置水凝胶贴片提供了新的维度。