Gibbs Jane, Greenway Hank
School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35Stirling Highway, Crawley, WA 6009, Australia.
School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35Stirling Highway, Crawley, WA 6009, Australia. Corresponding author; email:
Funct Plant Biol. 2003 Mar;30(3):353. doi: 10.1071/PP98095_ER.
Anoxia can be one consequence of waterlogging and submergence of plants. Anoxia in plant tissues reduces the rate of energy production by 65-97% compared with the rate in air. Thus, adaptation to anoxia always includes coping with an energy crisis. Tolerance to anoxia is relevant to wetland species, rice cultivation and transient waterlogging of other agricultural and horticultural crops. This perspective, in two parts, examines mechanisms of anoxia tolerance in plants. Part 1 covers anoxia tolerance in terms of growth and survival, the interaction of anoxia tolerance with other environmental factors, and the development of anoxic cores within plant tissues. Equally importantly, Part 1 also examines anaerobic carbohydrate catabolism (principally ethanolic fermentation in plants) and its regulation. We put forward two modes of anoxia tolerance, one based on reduced rates of anaerobic carbohydrate catabolism and the other on accelerated rates (Pasteur effect). Further, Part 1 examines mechanisms of post-anoxic injury. In Part 2 (Greenway and Gibbs, manuscript in preparation) we consider flow of the limited amount of energy produced under anoxia to processes essential for cell survival. We show that acclimation to anoxia in plants involves integration of a set of sophisticated characteristics, as a consequence of which the habitat within the anoxic cell is a very different world to that of the aerobic cell.
缺氧可能是植物涝渍和淹没的一个后果。与在空气中相比,植物组织中的缺氧会使能量产生速率降低65%至97%。因此,对缺氧的适应总是包括应对能量危机。耐缺氧性与湿地物种、水稻种植以及其他农作物和园艺作物的短暂涝渍有关。本观点分为两部分,探讨植物耐缺氧的机制。第1部分涵盖了生长和存活方面的耐缺氧性、耐缺氧性与其他环境因素的相互作用以及植物组织内缺氧核心的形成。同样重要的是,第1部分还研究了厌氧碳水化合物分解代谢(主要是植物中的乙醇发酵)及其调控。我们提出了两种耐缺氧模式,一种基于厌氧碳水化合物分解代谢速率降低,另一种基于加速速率(巴斯德效应)。此外,第1部分研究了缺氧后损伤的机制。在第2部分(格林韦和吉布斯,正在准备的手稿)中,我们考虑了缺氧条件下产生的有限能量向细胞存活所必需的过程的流动。我们表明,植物对缺氧的适应涉及一系列复杂特征的整合,因此缺氧细胞内的生境与需氧细胞的生境截然不同。