Suppr超能文献

识别伦敦英国国家医疗服务体系中自然形成的初级医疗服务提供者群体。

Identifying naturally occurring communities of primary care providers in the English National Health Service in London.

作者信息

Clarke Jonathan, Beaney Thomas, Majeed Azeem, Darzi Ara, Barahona Mauricio

机构信息

Centre for Health Policy, Imperial College London, London, UK

Centre for Mathematics of Precision Healthcare, Imperial College London, London, UK.

出版信息

BMJ Open. 2020 Jul 20;10(7):e036504. doi: 10.1136/bmjopen-2019-036504.

Abstract

OBJECTIVES

Primary Care Networks (PCNs) are a new organisational hierarchy with wide-ranging responsibilities introduced in the National Health Service (NHS) Long Term Plan. The vision is that PCNs should represent 'natural' communities of general practices (GP practices) collaborating at scale and covering a geography that fits well with practices, other healthcare providers and local communities. Our study aims to identify natural communities of GP practices based on patient registration patterns using Markov Multiscale Community Detection, an unsupervised network-based clustering technique to create catchments for these communities.

DESIGN

Retrospective observational study using Hospital Episode Statistics - patient-level administrative records of attendances to hospital.

SETTING

General practices in the 32 Clinical Commissioning Groups of Greater London PARTICIPANTS: All adult patients resident in and registered to a GP practice in Greater London that had one or more outpatient encounters at NHS hospitals between 1 April 2017 and 31 March 2018.

MAIN OUTCOME MEASURES

The allocation of GP practices in Greater London to PCNs based on the registrations of patients resident in each Lower Layer Super Output Area (LSOA) of Greater London. The population size and coverage of each proposed PCN.

RESULTS

3 428 322 unique patients attended 1334 GPs in 4835 LSOAs in Greater London. Our model grouped 1291 GPs (96.8%) and 4721 LSOAs (97.6%) into 165 mutually exclusive PCNs. Median PCN list size was 53 490, with a lower quartile of 38 079 patients and an upper quartile of 72 982 patients. A median of 70.1% of patients attended a GP within their allocated PCN, ranging from 44.6% to 91.4%.

CONCLUSIONS

With PCNs expected to take a role in population health management and with community providers expected to reconfigure around them, it is vital to recognise how PCNs represent their communities. Our method may be used by policymakers to understand the populations and geography shared between networks.

摘要

目标

基层医疗网络(PCNs)是英国国民医疗服务体系(NHS)长期计划中引入的一种新的组织层级,肩负着广泛职责。其愿景是,基层医疗网络应代表普通医疗实践(全科医生诊所)的“自然”社区,这些社区大规模协作,覆盖范围与诊所、其他医疗服务提供者及当地社区相契合。我们的研究旨在利用马尔可夫多尺度社区检测法,基于患者注册模式识别全科医生诊所的自然社区,这是一种基于网络的无监督聚类技术,用于为这些社区创建集水区。

设计

采用回顾性观察研究,使用医院 Episode 统计数据——患者层面的医院就诊行政记录。

背景

大伦敦 32 个临床委托小组中的普通医疗实践

参与者

2017 年 4 月 1 日至 2018 年 3 月 31 日期间,居住在大伦敦并在全科医生诊所注册且在 NHS 医院有一次或多次门诊就诊经历的所有成年患者。

主要观察指标

根据大伦敦每个下层超级输出区(LSOA)居民的注册情况,将大伦敦的全科医生诊所分配到基层医疗网络。每个拟议基层医疗网络的人口规模和覆盖范围。

结果

3428322 名不同患者在大伦敦 4835 个 LSOA 中的 1334 家全科医生诊所就诊。我们的模型将 1291 家全科医生诊所(96.8%)和 4721 个 LSOA(97.6%)分组为 165 个相互排斥的基层医疗网络。基层医疗网络列表的中位数规模为 53490,下四分位数为 38079 名患者,上四分位数为 72982 名患者。中位数为 70.1%的患者在其分配的基层医疗网络内就诊,范围从 44.6%至 91.4%。

结论

鉴于基层医疗网络有望在人群健康管理中发挥作用,且社区医疗服务提供者有望围绕其进行重新配置,认识基层医疗网络如何代表其社区至关重要。政策制定者可使用我们的方法来了解各网络之间共享的人群和地理情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e9/7375630/6fda7f1e073b/bmjopen-2019-036504f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验