Suppr超能文献

多尺度社区检测的编码动力学:基于映射方程的马尔可夫时间扫描

Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation.

作者信息

Schaub Michael T, Lambiotte Renaud, Barahona Mauricio

机构信息

Department of Mathematics, Imperial College London, London, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026112. doi: 10.1103/PhysRevE.86.026112. Epub 2012 Aug 21.

Abstract

The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the map equation formalism [Rosvall and Bergstrom, Proc. Natl. Acad. Sci. USA 105, 1118 (2008)] through an information-theoretic description of the process of coding inter- and intracommunity transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the "field-of-view" limit, in the communities it can detect. As a consequence, map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: The map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.

摘要

网络中社区结构的检测与根据网络模块找到其简洁描述密切相关。最近,映射方程形式主义[罗斯瓦尔和伯格斯特龙,《美国国家科学院院刊》105, 1118 (2008)]通过对平稳状态下网络中随机游走者的社区间和社区内转移过程进行信息论描述,利用了这一概念。然而,对完整马尔可夫动力学与编码机制之间关系的深入研究仍然缺乏。我们在此表明,原始的映射编码方案既是分块平均的又是单步的,它忽略了社区的内部结构,并在其能够检测的社区中引入了一个上限尺度,即“视野”限制。因此,映射很适合检测类似团的社区,但当社区远非类似团时可能会导致不良的过度划分。我们表明这种行为的一个特征是较大的压缩差距:映射描述长度远未达到其理想极限。为了解决这个问题,我们提出了一种简单的动态方法,通过分析马尔可夫过程的时间相关多步转移矩阵的加权邻接矩阵,将时间明确引入映射编码中。由此产生的马尔可夫时间扫描会在不同尺度上引发动态缩放,从而能够揭示高于视野限制的(潜在多尺度)社区结构,相关分区由小的压缩差距指示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验