Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
DIBRIS University of Genoa, Genoa, Italy.
J Clin Endocrinol Metab. 2020 Sep 1;105(9). doi: 10.1210/clinem/dgaa407.
The purpose of this work is to find the gut microbial fingerprinting of pediatric patients with type 1 diabetes.
The microbiome of 31 children with type 1 diabetes at onset and of 25 healthy children was determined using multiple polymorphic regions of the 16S ribosomal RNA. We performed machine-learning analyses and metagenome functional analysis to identify significant taxa and their metabolic pathways content.
Compared with healthy controls, patients showed a significantly higher relative abundance of the following most important taxa: Bacteroides stercoris, Bacteroides fragilis, Bacteroides intestinalis, Bifidobacterium bifidum, Gammaproteobacteria and its descendants, Holdemania, and Synergistetes and its descendants. On the contrary, the relative abundance of Bacteroides vulgatus, Deltaproteobacteria and its descendants, Parasutterella and the Lactobacillus, Turicibacter genera were significantly lower in patients with respect to healthy controls. The predicted metabolic pathway more associated with type 1 diabetes patients concerns "carbon metabolism," sugar and iron metabolisms in particular. Among the clinical variables considered, standardized body mass index, anti-insulin autoantibodies, glycemia, hemoglobin A1c, Tanner stage, and age at onset emerged as most significant positively or negatively correlated with specific clusters of taxa.
The relative abundance and supervised analyses confirmed the importance of B stercoris in type 1 diabetes patients at onset and showed a relevant role of Synergistetes and its descendants in patients with respect to healthy controls. In general the robustness and coherence of the showed results underline the relevance of studying the microbioma using multiple polymorphic regions, different types of analysis, and different approaches within each analysis.
本研究旨在寻找 1 型糖尿病患儿的肠道微生物指纹图谱。
采用 16S 核糖体 RNA 多个多态区,对 31 例 1 型糖尿病患儿发病时和 25 例健康儿童的微生物组进行了检测。我们进行了机器学习分析和宏基因组功能分析,以确定显著的分类群及其代谢途径含量。
与健康对照组相比,患儿的以下重要分类群的相对丰度显著升高:拟杆菌属、脆弱拟杆菌、肠道拟杆菌、双歧杆菌、γ变形菌及其后代、霍尔德曼尼亚菌、共生体及其后代。相反,与健康对照组相比,患儿中脆弱拟杆菌、δ变形菌及其后代、副拟杆菌和乳杆菌、图里西杆菌属的相对丰度显著降低。与 1 型糖尿病患者更相关的预测代谢途径涉及“碳代谢”,特别是糖和铁代谢。在所考虑的临床变量中,标准化体重指数、抗胰岛素自身抗体、血糖、糖化血红蛋白、Tanner 分期和发病年龄与特定分类群簇呈正相关或负相关。
相对丰度和监督分析证实了拟杆菌属在 1 型糖尿病患儿发病时的重要性,并显示了共生体及其后代在患者中的重要作用,与健康对照组相比。总的来说,所显示结果的稳健性和一致性强调了使用多个多态区、不同类型的分析以及每种分析中的不同方法研究微生物组的相关性。