University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Global Drug Development, Technical Research & Development, Novartis, Biologics Technical Development Mengeš, Drug Product Development Biosimilars, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia.
University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
Eur J Pharm Biopharm. 2020 Sep;154:236-245. doi: 10.1016/j.ejpb.2020.07.010. Epub 2020 Jul 18.
Polysorbates are amphiphilic, non-ionic surfactants, and they represent one of the key components of biopharmaceuticals. They serve as stabilisers, and their degradation can cause particle formation, which has been an industry-wide issue over the past decade. To determine the influence of the buffers most frequently used in biopharmaceuticals on polysorbate degradation, an accelerated stability study was carried out using placebo formulations containing 0.02% polysorbates and 20 mM buffers (pH 5.5, 6.5). These included histidine chloride, sodium citrate, sodium succinate and sodium phosphate buffers. The rate of polysorbate degradation was highest in histidine chloride buffer, and therefore we further focused on the mechanism here. The predominant degradation pathway of polysorbates in this buffer was ester hydrolysis, catalysed by the imidazole moiety of the histidine. Interestingly, the presence of therapeutic proteins in the formulations slowed histidine-catalysed degradation of polysorbates in 50% of cases, with negligible degradation seen otherwise. This emphasises the complex nature of the interactions between the components of biopharmaceutical drug products. Nonetheless, there are disadvantages of using histidine chloride buffers in biopharmaceuticals that contain polysorbates. Careful consideration should be given to selection of excipients used in parenteral formulations, whereby compatibility between buffer and surfactant is of key importance.
聚山梨酯是非离子型两亲表面活性剂,是生物制药的关键组成部分之一。它们作为稳定剂,其降解会导致颗粒形成,这是过去十年行业内的一个普遍问题。为了确定生物制药中最常用的缓冲液对聚山梨酯降解的影响,进行了一项加速稳定性研究,使用含有 0.02%聚山梨酯和 20 mM 缓冲液(pH 5.5、6.5)的安慰剂制剂。这些缓冲液包括盐酸组氨酸、柠檬酸钠、琥珀酸钠和磷酸钠缓冲液。在盐酸组氨酸缓冲液中,聚山梨酯的降解速度最快,因此我们在这里进一步关注其机制。在该缓冲液中,聚山梨酯的主要降解途径是酯水解,由组氨酸的咪唑部分催化。有趣的是,在制剂中存在治疗性蛋白的情况下,在 50%的情况下会减缓组氨酸催化的聚山梨酯降解,而在其他情况下则几乎没有降解。这强调了生物制药药物产品中各成分之间相互作用的复杂性。尽管如此,在含有聚山梨酯的生物制药中使用盐酸组氨酸缓冲液仍有一些缺点。在选择用于注射制剂的赋形剂时应谨慎考虑,其中缓冲液与表面活性剂的相容性至关重要。