Suppr超能文献

相似文献

1
Learning to Make Chemical Predictions: the Interplay of Feature Representation, Data, and Machine Learning Methods.
Chem. 2020 Jul 9;6(7):1527-1542. doi: 10.1016/j.chempr.2020.05.014. Epub 2020 Jun 16.
2
Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
Acc Chem Res. 2021 Feb 16;54(4):827-836. doi: 10.1021/acs.accounts.0c00745. Epub 2021 Feb 3.
3
How to approach machine learning-based prediction of drug/compound-target interactions.
J Cheminform. 2023 Feb 6;15(1):16. doi: 10.1186/s13321-023-00689-w.
6
7
Transfer learning for small molecule retention predictions.
J Chromatogr A. 2021 May 10;1644:462119. doi: 10.1016/j.chroma.2021.462119. Epub 2021 Mar 31.
9
Chemi-Net: A Molecular Graph Convolutional Network for Accurate Drug Property Prediction.
Int J Mol Sci. 2019 Jul 10;20(14):3389. doi: 10.3390/ijms20143389.
10
Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
Acc Chem Res. 2021 Feb 2;54(3):532-545. doi: 10.1021/acs.accounts.0c00686. Epub 2021 Jan 22.

引用本文的文献

1
Machine Learning for Toxicity Prediction Using Chemical Structures: Pillars for Success in the Real World.
Chem Res Toxicol. 2025 May 19;38(5):759-807. doi: 10.1021/acs.chemrestox.5c00033. Epub 2025 May 2.
2
UCBShift 2.0: Bridging the Gap from Backbone to Side Chain Protein Chemical Shift Prediction for Protein Structures.
J Am Chem Soc. 2024 Nov 20;146(46):31733-31745. doi: 10.1021/jacs.4c10474. Epub 2024 Nov 12.
3
Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis.
Beilstein J Org Chem. 2024 Sep 10;20:2280-2304. doi: 10.3762/bjoc.20.196. eCollection 2024.
4
Exploring an accurate machine learning model to quickly estimate stability of diverse energetic materials.
iScience. 2024 Mar 8;27(4):109452. doi: 10.1016/j.isci.2024.109452. eCollection 2024 Apr 19.
5
Highly Accurate Prediction of NMR Chemical Shifts from Low-Level Quantum Mechanics Calculations Using Machine Learning.
J Chem Theory Comput. 2024 Mar 12;20(5):2152-2166. doi: 10.1021/acs.jctc.3c01256. Epub 2024 Feb 8.
6
Integrated Molecular Modeling and Machine Learning for Drug Design.
J Chem Theory Comput. 2023 Nov 14;19(21):7478-7495. doi: 10.1021/acs.jctc.3c00814. Epub 2023 Oct 26.
7
Accurate, interpretable predictions of materials properties within transformer language models.
Patterns (N Y). 2023 Aug 2;4(10):100803. doi: 10.1016/j.patter.2023.100803. eCollection 2023 Oct 13.
8
Recent Advances in Machine-Learning-Based Chemoinformatics: A Comprehensive Review.
Int J Mol Sci. 2023 Jul 15;24(14):11488. doi: 10.3390/ijms241411488.
9
Force field-inspired transformer network assisted crystal density prediction for energetic materials.
J Cheminform. 2023 Jul 19;15(1):65. doi: 10.1186/s13321-023-00736-6.

本文引用的文献

1
Accurate prediction of chemical shifts for aqueous protein structure on "Real World" data.
Chem Sci. 2020 Mar 3;11(12):3180-3191. doi: 10.1039/c9sc06561j.
3
FCHL revisited: Faster and more accurate quantum machine learning.
J Chem Phys. 2020 Jan 31;152(4):044107. doi: 10.1063/1.5126701.
4
Machine learning approaches for analyzing and enhancing molecular dynamics simulations.
Curr Opin Struct Biol. 2020 Apr;61:139-145. doi: 10.1016/j.sbi.2019.12.016. Epub 2020 Jan 20.
5
Improved protein structure prediction using potentials from deep learning.
Nature. 2020 Jan;577(7792):706-710. doi: 10.1038/s41586-019-1923-7. Epub 2020 Jan 15.
7
Predicting Materials Properties with Little Data Using Shotgun Transfer Learning.
ACS Cent Sci. 2019 Oct 23;5(10):1717-1730. doi: 10.1021/acscentsci.9b00804. Epub 2019 Sep 30.
8
Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction.
ACS Cent Sci. 2019 Sep 25;5(9):1572-1583. doi: 10.1021/acscentsci.9b00576. Epub 2019 Aug 30.
9
Analyzing Learned Molecular Representations for Property Prediction.
J Chem Inf Model. 2019 Aug 26;59(8):3370-3388. doi: 10.1021/acs.jcim.9b00237. Epub 2019 Aug 13.
10
Reconciling modern machine-learning practice and the classical bias-variance trade-off.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15849-15854. doi: 10.1073/pnas.1903070116. Epub 2019 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验