Suppr超能文献

相似文献

1
Highly Accurate Prediction of NMR Chemical Shifts from Low-Level Quantum Mechanics Calculations Using Machine Learning.
J Chem Theory Comput. 2024 Mar 12;20(5):2152-2166. doi: 10.1021/acs.jctc.3c01256. Epub 2024 Feb 8.
2
Why benchmark-quality computations are needed to reproduce 1-adamantyl cation NMR chemical shifts accurately.
J Phys Chem A. 2011 Mar 24;115(11):2340-4. doi: 10.1021/jp1103356. Epub 2011 Mar 1.
3
Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts.
Phys Chem Chem Phys. 2022 Jun 29;24(25):15230-15244. doi: 10.1039/d2cp01206e.
4
Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.
J Chem Theory Comput. 2021 Feb 9;17(2):826-840. doi: 10.1021/acs.jctc.0c00979. Epub 2021 Jan 11.
5
Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
J Phys Chem B. 2009 Jul 30;113(30):10380-8. doi: 10.1021/jp901992p.
6
MIM-ML: A Novel Quantum Chemical Fragment-Based Random Forest Model for Accurate Prediction of NMR Chemical Shifts of Nucleic Acids.
J Chem Theory Comput. 2023 Oct 10;19(19):6632-6642. doi: 10.1021/acs.jctc.3c00563. Epub 2023 Sep 13.
7
Automated Fragmentation Quantum Mechanical Calculation of N and C Chemical Shifts in a Membrane Protein.
J Chem Theory Comput. 2023 Oct 24;19(20):7405-7422. doi: 10.1021/acs.jctc.3c00621. Epub 2023 Oct 3.
10
IMPRESSION generation 2 - accurate, fast and generalised neural network model for predicting NMR parameters in place of DFT.
Chem Sci. 2025 Mar 31;16(19):8377-8382. doi: 10.1039/d4sc07858f. eCollection 2025 May 14.

引用本文的文献

1
Accurate and Efficient Structure Elucidation from Routine One-Dimensional NMR Spectra Using Multitask Machine Learning.
ACS Cent Sci. 2024 Nov 13;10(11):2162-2170. doi: 10.1021/acscentsci.4c01132. eCollection 2024 Nov 27.
2
UCBShift 2.0: Bridging the Gap from Backbone to Side Chain Protein Chemical Shift Prediction for Protein Structures.
J Am Chem Soc. 2024 Nov 20;146(46):31733-31745. doi: 10.1021/jacs.4c10474. Epub 2024 Nov 12.
4
Bent naphthodithiophenes: synthesis and characterization of isomeric fluorophores.
RSC Adv. 2024 Aug 12;14(35):25120-25129. doi: 10.1039/d4ra04850d.
5
Accurate Prediction of NMR Chemical Shifts: Integrating DFT Calculations with Three-Dimensional Graph Neural Networks.
J Chem Theory Comput. 2024 Jun 25;20(12):5250-5258. doi: 10.1021/acs.jctc.4c00422. Epub 2024 Jun 6.

本文引用的文献

1
Computation of CCSD(T)-Quality NMR Chemical Shifts via Δ-Machine Learning from DFT.
J Chem Theory Comput. 2023 Jun 27;19(12):3601-3615. doi: 10.1021/acs.jctc.3c00165. Epub 2023 Jun 1.
3
Efficient Calculation of NMR Shielding Constants Using Composite Method Approximations and Locally Dense Basis Sets.
J Chem Theory Comput. 2023 Jan 24;19(2):514-523. doi: 10.1021/acs.jctc.2c00933. Epub 2023 Jan 3.
4
A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids.
J Phys Chem C Nanomater Interfaces. 2022 Oct 6;126(39):16710-16720. doi: 10.1021/acs.jpcc.2c03854. Epub 2022 Sep 23.
6
Extended Benchmark Set of Main-Group Nuclear Shielding Constants and NMR Chemical Shifts and Its Use to Evaluate Modern DFT Methods.
J Chem Theory Comput. 2021 Dec 14;17(12):7602-7621. doi: 10.1021/acs.jctc.1c00919. Epub 2021 Nov 19.
8
Real-time prediction of H and C chemical shifts with DFT accuracy using a 3D graph neural network.
Chem Sci. 2021 Aug 9;12(36):12012-12026. doi: 10.1039/d1sc03343c. eCollection 2021 Sep 22.
10
DP4-AI automated NMR data analysis: straight from spectrometer to structure.
Chem Sci. 2020 Mar 6;11(17):4351-4359. doi: 10.1039/d0sc00442a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验