Suppr超能文献

UCBShift 2.0:从骨干到侧链蛋白质化学位移预测蛋白质结构的桥梁。

UCBShift 2.0: Bridging the Gap from Backbone to Side Chain Protein Chemical Shift Prediction for Protein Structures.

机构信息

Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria.

Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftintalstr. 6/III, A-8010 Graz, Austria.

出版信息

J Am Chem Soc. 2024 Nov 20;146(46):31733-31745. doi: 10.1021/jacs.4c10474. Epub 2024 Nov 12.

Abstract

Chemical shifts are a readily obtainable NMR observable that can be measured with high accuracy, and because they are sensitive to conformational averages and the local molecular environment, they yield detailed information about protein structure in solution. To predict chemical shifts of protein structures, we introduced the UCBShift method that uniquely fuses a transfer prediction module, which employs sequence and structure alignments to select reference chemical shifts from an experimental database, with a machine learning model that uses carefully curated and physics-inspired features derived from X-ray crystal structures to predict backbone chemical shifts for proteins. In this work, we extend the UCBShift 1.0 method to side chain chemical shift prediction to perform whole protein analysis, which, when validated against well-defined test data shows higher accuracy and better reliability compared to the popular SHIFTX2 method. With the greater abundance of cleaned protein shift-structure data and the modularity of the general UCBShift algorithms, users can gain insight into different features important for residue-specific stabilizing interactions for protein backbone and side chain chemical shift prediction. We suggest several backward and forward applications of UCBShift 2.0 that can help validate AlphaFold structures and probe protein dynamics.

摘要

化学位移是一种易于获得的 NMR 可观测值,可进行高精度测量。由于它们对构象平均值和局部分子环境敏感,因此可以提供有关溶液中蛋白质结构的详细信息。为了预测蛋白质结构的化学位移,我们引入了 UCBShift 方法,该方法独特地融合了转移预测模块,该模块使用序列和结构比对从实验数据库中选择参考化学位移,以及机器学习模型,该模型使用精心策划和受物理启发的特征,这些特征源自 X 射线晶体结构,用于预测蛋白质的骨架化学位移。在这项工作中,我们将 UCBShift 1.0 方法扩展到侧链化学位移预测,以进行全蛋白质分析。与流行的 SHIFTX2 方法相比,经过针对明确定义的测试数据的验证,该方法具有更高的准确性和更好的可靠性。随着更丰富的清洁蛋白质位移-结构数据和通用 UCBShift 算法的模块化,用户可以深入了解对于蛋白质骨架和侧链化学位移预测至关重要的不同特征,以了解残基特异性稳定相互作用。我们建议使用 UCBShift 2.0 进行一些回溯和前向应用,以帮助验证 AlphaFold 结构并探测蛋白质动力学。

相似文献

3
SHIFTX2: significantly improved protein chemical shift prediction.SHIFTX2:显著提高了蛋白质化学位移预测能力。
J Biomol NMR. 2011 May;50(1):43-57. doi: 10.1007/s10858-011-9478-4. Epub 2011 Mar 30.

本文引用的文献

5
Putting peptides on display.展示肽段。
Nat Chem Biol. 2024 Jan;20(1):1-2. doi: 10.1038/s41589-023-01494-0.
8
The Energetic Origins of Pi-Pi Contacts in Proteins.蛋白质中π-π相互作用的能量起源
J Am Chem Soc. 2023 Nov 2;145(45):24836-51. doi: 10.1021/jacs.3c09198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验