Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia.
J Biol Dyn. 2020 Dec;14(1):590-607. doi: 10.1080/17513758.2020.1788182.
In this paper, we apply optimal control theory to a novel coronavirus (COVID-19) transmission model given by a system of non-linear ordinary differential equations. Optimal control strategies are obtained by minimizing the number of exposed and infected population considering the cost of implementation. The existence of optimal controls and characterization is established using Pontryagin's Maximum Principle. An expression for the basic reproduction number is derived in terms of control variables. Then the sensitivity of basic reproduction number with respect to model parameters is also analysed. Numerical simulation results demonstrated good agreement with our analytical results. Finally, the findings of this study shows that comprehensive impacts of prevention, intensive medical care and surface disinfection strategies outperform in reducing the disease epidemic with optimum implementation cost.
在本文中,我们将最优控制理论应用于由非线性常微分方程组给出的新型冠状病毒(COVID-19)传播模型。通过考虑实施成本,我们通过最小化暴露和感染人群的数量来获得最优控制策略。使用庞特里亚金极大值原理来建立最优控制的存在性和特征描述。根据控制变量推导出基本繁殖数的表达式。然后还分析了基本繁殖数对模型参数的敏感性。数值模拟结果与我们的分析结果吻合较好。最后,本研究的结果表明,预防、强化医疗和表面消毒策略的综合影响在降低疾病流行方面具有最佳的实施成本优势。