Suppr超能文献

具有传播动态和公共卫生策略的 COVID-19 六 compartment 模型。

A six-compartment model for COVID-19 with transmission dynamics and public health strategies.

机构信息

Department of Mathematics, A. V. V. M. Sri Pushpam College, Poondi, Thanjavur, Tamil Nadu, India.

Department of Mathematics, St. Peter's Engineering College (Autonomous), Medchal District, Hyderabad, Telangana, India.

出版信息

Sci Rep. 2024 Sep 27;14(1):22226. doi: 10.1038/s41598-024-72487-9.

Abstract

The global crisis of the COVID-19 pandemic has highlighted the need for mathematical models to inform public health strategies. The present study introduces a novel six-compartment epidemiological model that uniquely incorporates a higher isolation rate for unreported symptomatic cases of COVID-19 compared to reported cases, aiming to enhance prediction accuracy and address the challenge of initial underreporting. Additionally, we employ optimal control theory to assess the cost-effectiveness of interventions and adapt these strategies to specific epidemiological scenarios, such as varying transmission rates and the presence of asymptomatic carriers. By applying this model to COVID-19 data from India (30 January 2020 to 24 November 2020), chosen to capture the initial outbreak and subsequent waves, we calculate a basic reproduction number of 2.147, indicating the high transmissibility of the virus during this period in India. A sensitivity analysis reveals the critical impact of detection rates and isolation measures on disease progression, showing the robustness of our model in estimating the basic reproduction number. Through optimal control simulations, we demonstrate that increasing isolation rates for unreported cases and enhancing detection reduces the spread of COVID-19. Furthermore, our cost-effectiveness analysis establishes that a combined strategy of isolation and treatment is both more effective and economically viable. This research offers novel insights into the efficacy of non-pharmaceutical interventions, providing a tool for strategizing public health interventions and advancing our understanding of infectious disease dynamics.

摘要

全球 COVID-19 大流行危机突显了需要使用数学模型为公共卫生策略提供信息。本研究引入了一种新颖的六 compartment 传染病模型,该模型独特之处在于,它将未报告的 COVID-19 症状病例的隔离率与报告病例的隔离率相比提高了,旨在提高预测准确性并解决初始漏报的挑战。此外,我们利用最优控制理论来评估干预措施的成本效益,并根据特定的流行病学情况(如不同的传播率和无症状携带者的存在)来调整这些策略。通过将该模型应用于从印度(2020 年 1 月 30 日至 11 月 24 日)采集的 COVID-19 数据,以捕获初始爆发和随后的波次,我们计算出基本繁殖数为 2.147,表明在此期间印度病毒的高传染性。敏感性分析表明检测率和隔离措施对疾病进展的关键影响,显示了我们的模型在估计基本繁殖数方面的稳健性。通过最优控制模拟,我们证明了提高未报告病例的隔离率和增强检测能力可以减少 COVID-19 的传播。此外,我们的成本效益分析表明,隔离和治疗相结合的策略既更有效又更具经济可行性。这项研究为非药物干预措施的效果提供了新的见解,为制定公共卫生干预策略提供了工具,并推进了我们对传染病动力学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b664/11436938/2845262dc528/41598_2024_72487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验