Suppr超能文献

CO还原的分子催化:电化学和光驱动过程中使用选定的铁、镍和钴氮杂大环及多吡啶配合物的最新进展与展望

Molecular catalysis of CO reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes.

作者信息

Boutin E, Merakeb L, Ma B, Boudy B, Wang M, Bonin J, Anxolabéhère-Mallart E, Robert M

机构信息

Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.

出版信息

Chem Soc Rev. 2020 Jul 22. doi: 10.1039/d0cs00218f.

Abstract

Earth-abundant Fe, Ni, and Co aza macrocyclic and polypyridine complexes have been thoroughly investigated for CO2 electrochemical and visible-light-driven reduction. Since the first reports in the 1970s, an enormous body of work has been accumulated regarding the two-electron two-proton reduction of the gas, along with mechanistic and spectroscopic efforts to rationalize the reactivity and establish guidelines for structure-reactivity relationships. The ability to fine tune the ligand structure and the almost unlimited possibilities of designing new complexes have led to highly selective and efficient catalysts. Recent efforts toward developing hybrid systems upon combining molecular catalysts with conductive or semi-conductive materials have converged to high catalytic performances in water solutions, to the inclusion of these catalysts into CO2 electrolyzers and photo-electrochemical devices, and to the discovery of catalytic pathways beyond two electrons. Combined with the continuous mechanistic efforts and new developments for in situ and in operando spectroscopic studies, molecular catalysis of CO2 reduction remains a highly creative approach.

摘要

地球上储量丰富的铁、镍和钴氮杂大环及多吡啶配合物已被深入研究用于二氧化碳的电化学还原和可见光驱动还原。自20世纪70年代首次报道以来,关于该气体的双电子双质子还原已经积累了大量的研究工作,同时还有机理和光谱方面的研究,以阐明反应活性并建立结构-反应活性关系的指导原则。对配体结构进行微调的能力以及设计新配合物几乎无限的可能性,已产生了高选择性和高效的催化剂。最近,在将分子催化剂与导电或半导体材料相结合以开发混合系统方面所做的努力,已在水溶液中实现了高催化性能,将这些催化剂纳入二氧化碳电解槽和光电化学装置,并发现了超越双电子的催化途径。结合持续的机理研究以及原位和 operando光谱研究的新进展,二氧化碳还原的分子催化仍然是一种极具创造性的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验