Suppr超能文献

文昌鱼延髓网质神经元建模仿真:多个不同参数集可产生逼真的模拟结果。

Modeling of lamprey reticulospinal neurons: multiple distinct parameter sets yield realistic simulations.

机构信息

Division of Biological Science, University of Missouri, Columbia, Missouri.

Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri.

出版信息

J Neurophysiol. 2020 Sep 1;124(3):895-913. doi: 10.1152/jn.00070.2020. Epub 2020 Jul 22.

Abstract

For the lamprey and other vertebrates, reticulospinal (RS) neurons project descending axons to the spinal cord and activate motor networks to initiate locomotion and other behaviors. In the present study, a biophysically detailed computer model of lamprey RS neurons was constructed consisting of three compartments: dendritic, somatic, and axon initial segment (AIS). All compartments included passive channels. In addition, the soma and AIS had fast potassium and sodium channels. The soma included three additional voltage-gated ion channels (slow sodium and high- and low-voltage-activated calcium) and calcium-activated potassium channels. An initial manually adjusted default parameter set, which was based, in part, on modified parameters from models of lamprey spinal neurons, generated simulations of single action potentials and repetitive firing that scored favorably (0.658; maximum = 0.964) compared with experimentally derived properties of lamprey RS neurons. Subsequently, a dual-annealing search paradigm identified 4,302 viable parameter sets at local maxima within parameter space that yielded higher scores than the default parameter set, including many with much higher scores of approximately 0.85-0.87 (i.e., ~30% improvement). In addition, 5- and 2-conductance grid searches identified a relatively large number of viable parameters sets for which significant correlations were present between maximum conductances for pairs of ion channels. The present results indicated that multiple model parameter sets ("solutions") generated action potentials and repetitive firing that mimicked many of the properties of lamprey RS neurons. To our knowledge, this is the first study to systematically explore parameter space for a biophysically detailed model of lamprey RS neurons. A computer model of lamprey reticulospinal neurons with a default parameter set produced simulations of action potentials and repetitive firing that scored favorably compared with the properties of these neurons. A dual-annealing search algorithm explored ~50 million parameter sets and identified 4,302 distinct viable parameter sets within parameter space that yielded higher/much higher scores than the default parameter set. In addition, 5- and 2-conductance grid searches identified significant correlations between maximum conductances for pairs of ion channels.

摘要

对于七鳃鳗和其他脊椎动物,网状脊髓(RS)神经元投射下行轴突至脊髓,并激活运动网络以启动运动和其他行为。在本研究中,构建了一个具有三个隔室的七鳃鳗 RS 神经元的生物物理详细计算机模型:树突、体和轴突起始段(AIS)。所有隔室都包含被动通道。此外,体和 AIS 具有快速钾和钠通道。体还包括三个额外的电压门控离子通道(慢钠和高、低电压激活钙)和钙激活钾通道。一个初始的手动调整默认参数集,部分基于对七鳃鳗脊髓神经元模型的修改参数,生成了单个动作电位和重复放电的模拟,与七鳃鳗 RS 神经元的实验特性相比得分较高(0.658;最大值= 0.964)。随后,双退火搜索范例在参数空间内的局部最大值处确定了 4302 个可行的参数集,这些参数集的得分高于默认参数集,其中许多得分更高,约为 0.85-0.87(即,约提高 30%)。此外,5-和 2-电导网格搜索确定了相对大量可行的参数集,其中离子通道对之间的最大电导存在显著相关性。本研究结果表明,多个模型参数集(“解决方案”)产生的动作电位和重复放电模拟了七鳃鳗 RS 神经元的许多特性。据我们所知,这是首次系统地探索七鳃鳗 RS 神经元生物物理详细模型的参数空间的研究。具有默认参数集的七鳃鳗网状脊髓神经元计算机模型产生的动作电位和重复放电模拟与这些神经元的特性相比得分较高。双退火搜索算法探索了约 5000 万个参数集,并在参数空间内确定了 4302 个不同的可行参数集,这些参数集的得分高于/大大高于默认参数集。此外,5-和 2-电导网格搜索确定了离子通道对之间的最大电导之间存在显著相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验