Stennett Cary R, Nguyen Thien H, Power Philip P
Department of Chemistry, University of California, Davis, California 95616, United States.
Inorg Chem. 2020 Aug 3;59(15):11079-11088. doi: 10.1021/acs.inorgchem.0c01572. Epub 2020 Jul 22.
The synthesis and characterization of V(═O){N(SiMe)} (), V(═NSiMe){N(SiMe)} (), and V(═NSiMe)(OSiMe){N(SiMe)} () are described. Prior attempts to synthesize the vanadium(V) oxo complex via salt metathesis of VOCl with the lithium or sodium silylamide salt had yielded either the putative rearranged species V(═NSiMe)(OSiMe){N(SiMe)} () or the oxo-bridged, dimetallic {(μ-O)V[N(SiMe)]}. We now show that complex is available by treatment of the vanadium(III) tris(silylamide) V{N(SiMe)} with iodosylbenzene. The imido complex was obtained by treatment of V{N(SiMe)} with trimethylsilyl azide. Sublimation of formed complex , which was determined to be V(═NSiMe)(OSiMe){N(SiMe)}, on the basis of infrared, electronic, and H and V NMR spectroscopies. Crystallographic disorder precluded a complete structural characterization of , although a four-coordinate V atom, as well as severely disordered ligands, were apparent. Comparison of the vibrational spectra of and allowed an unambiguous assignment of the V-O (995 cm) and V-N (1060 cm) stretching bands. The vibrational spectrum of complex displayed strong absorbances at 1090 and 945 cm, indicative of its metal imide and metal siloxide moieties. The H NMR spectrum of in deuterated benzene showed overlapping signals for the ligand protons proximal and distal to the oxo moiety at 0.52 and 0.38 ppm. The H NMR spectrum of in deuterated methylene chloride displayed distinct signals for the imido (0.41 ppm) and amido (0.35 ppm) protons, whereas H NMR spectroscopy of showed three signals in an intensity ratio consistent with the formula V(═NSiMe)(OSiMe){N(SiMe)}. V NMR spectra of - revealed singlet resonances at -119 ppm (), -24 ppm (), and -279 ppm (). The electronic spectra of - displayed single absorbances in the charge transfer region, consistent with their d electron configurations. Kinetic studies of the spontaneous conversion of complex to were used to determine the rate constants (ca. 0.0002 s (63 °C), 0.0006 s (73 °C), 0.002 s (83 °C)) and activation energy (ca. 20 kcal/mol) of this first-order process.
描述了V(═O){N(SiMe)} ()、V(═NSiMe){N(SiMe)} ()和V(═NSiMe)(OSiMe){N(SiMe)} ()的合成与表征。先前尝试通过VOCl与锂或钠硅烷基酰胺盐的盐复分解反应合成钒(V)氧代配合物 ,结果要么得到推测的重排产物V(═NSiMe)(OSiMe){N(SiMe)} (),要么得到氧桥联的双金属{(μ-O)V[N(SiMe)]}。我们现在表明,通过用碘苯处理钒(III)三(硅烷基酰胺)V{N(SiMe)}可得到配合物 。通过用三甲基硅基叠氮化物处理V{N(SiMe)}得到亚氨基配合物 。 的升华形成了配合物 ,根据红外、电子以及氢和钒核磁共振光谱确定其为V(═NSiMe)(OSiMe){N(SiMe)}。晶体学无序妨碍了对 的完整结构表征,尽管一个四配位的V原子以及严重无序的配体是明显的。 和 的振动光谱比较使得能够明确归属V - O (995 cm)和V - N (1060 cm)伸缩带。配合物 的振动光谱在1090和945 cm处显示出强吸收,表明其金属亚胺和金属硅氧化物部分。 在氘代苯中的氢核磁共振光谱显示,在0.52和0.38 ppm处,氧代部分近端和远端配体质子的信号重叠。 在氘代二氯甲烷中的氢核磁共振光谱显示出亚氨基(0.41 ppm)和酰胺基(0.35 ppm)质子的明显信号,而 的氢核磁共振光谱显示出三个强度比与分子式V(═NSiMe)(OSiMe){N(SiMe)}一致的信号。 - 的钒核磁共振光谱在 - 119 ppm ()、 - 24 ppm ()和 - 279 ppm ()处显示出单重态共振。 - 的电子光谱在电荷转移区域显示出单一吸收,与其d电子构型一致。对配合物 自发转化为 的动力学研究用于确定该一级过程的速率常数(约0.0002 s (63 °C)、0.0006 s (73 °C)、0.002 s (83 °C))和活化能(约20 kcal/mol)。