Sliz Rafal, Czajkowski Jakub, Fabritius Tapio
Optoelectronics and Measurement Techniques Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Erkki Koiso-Kanttilankatu 3, 90570 Oulu, Finland.
Microsoft, HoloLens Optics Finland, Keilalehdentie 2-4, 02150 Espoo, Finland.
Langmuir. 2020 Aug 18;36(32):9562-9570. doi: 10.1021/acs.langmuir.0c01560. Epub 2020 Aug 6.
Predicting and controlling a droplet's behavior on surfaces is very complex due to several factors affecting its nature. These factors play a crucial role in colloidal material deposition and related solution-based manufacturing methods such as printing. A better understanding of the processes governing the droplet in the picoliter regime is needed to help develop novel thin-film manufacturing methods and improve the current ones. This study introduces the substrate temperature as a method to control the droplet's behavior during inkjet printing, especially the coffee-ring phenomena, at an unprecedented temperature range (25-250 °C). To explain the particular behavior of the droplet, this research associates the creation of specific coffee-ring micro/nanostructures at elevated temperatures with the Leidenfrost effect that is responsible for creating a vapor pocket under the drying drop. Herein, we combine experimental data and numerical methods to explain the drying dynamic of the picoliter-size droplet on the substrate at elevated temperatures. The achieved results indicate that the coffee-ring effect is correlated with the heat-transfer changes caused by the Leidenfrost effect and can be controlled and used to produce micro/nanostructured thin films without additional processing steps.
由于多种因素影响液滴的性质,预测和控制液滴在表面的行为非常复杂。这些因素在胶体材料沉积以及相关的基于溶液的制造方法(如印刷)中起着至关重要的作用。为了帮助开发新型薄膜制造方法并改进现有方法,需要更好地理解皮升量级液滴的控制过程。本研究引入基板温度作为一种在前所未有的温度范围(25 - 250°C)内控制喷墨打印过程中液滴行为的方法,尤其是控制咖啡环现象。为了解释液滴的特殊行为,本研究将高温下特定咖啡环微/纳米结构的形成与莱顿弗罗斯特效应联系起来,该效应负责在干燥液滴下方形成蒸汽层。在此,我们结合实验数据和数值方法来解释高温下皮升尺寸液滴在基板上的干燥动力学。所得结果表明,咖啡环效应与莱顿弗罗斯特效应引起的传热变化相关,并且可以在无需额外加工步骤的情况下进行控制并用于生产微/纳米结构薄膜。