Center for Childhood Infections and Vaccines (CCIV), Atlanta, Georgia, USA.
Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
J Virol. 2020 Sep 15;94(19). doi: 10.1128/JVI.00985-20.
The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients. The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.
新出现的人类冠状病毒,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2),引起了呼吸道疾病的大流行。目前的证据表明,严重的 SARS-CoV-2 病例与免疫反应失调有关。然而,人们对先天免疫系统如何对 SARS-CoV-2 作出反应知之甚少。在这项研究中,我们使用原代人呼吸道上皮(pHAE)培养物来模拟 SARS-CoV-2 感染,这些培养物保持在气液界面。我们发现 SARS-CoV-2 感染并在 pHAE 培养物中复制,并定向释放到顶端,而不是基底外侧表面。转录谱研究发现,感染的 pHAE 培养物具有以促炎细胞因子和趋化因子诱导为主的分子特征,包括白细胞介素 6(IL-6)、肿瘤坏死因子-α(TNF-α)和 CXCL8,并确定 NF-κB 和 ATF-4 是这种促炎细胞因子反应的关键驱动因素。令人惊讶的是,我们观察到对 SARS-CoV-2 感染没有完全缺乏 I 型或 III 型干扰素(IFN)反应。然而,I 型和 III 型 IFN 的预处理和后处理可显著降低 pHAE 培养物中的病毒复制,这与抗病毒效应基因的上调相关。综上所述,我们的研究表明 SARS-CoV-2 不会引发 IFN 反应,但对 I 型和 III 型 IFN 的作用敏感。我们的研究表明,pHAE 培养物可用于模拟 SARS-CoV-2 感染,I 型和 III 型 IFN 均可作为治疗 COVID-19 患者的治疗选择。目前正在发生的呼吸道疾病大流行,COVID-19,是由一种名为 SARS-CoV-2 的新出现的冠状病毒引起的。这种病毒感染气道和肺细胞,引起发热、干咳和呼吸急促。严重的 COVID-19 病例可导致肺部损伤、低血氧水平甚至死亡。由于目前尚无批准用于人类的疫苗,因此迫切需要研究 SARS-CoV-2 感染的机制。我们的研究确定了一个极好的系统来模拟 SARS-CoV-2 对人类气道的感染,可用于测试各种治疗方法。对该模型系统中的感染分析发现,人呼吸道上皮细胞培养物诱导强烈的促炎细胞因子反应,但阻止 SARS-CoV-2 产生 I 型和 III 型干扰素。然而,用免疫分子 I 型或 III 型干扰素(IFN)治疗气道培养物能够抑制 SARS-CoV-2 感染。因此,我们的模型系统确定 I 型或 III 型 IFN 作为 COVID-19 患者的潜在抗病毒治疗方法。