Suppr超能文献

Ⅰ型和Ⅲ型干扰素限制 SARS-CoV-2 感染人呼吸道上皮细胞。

Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures.

机构信息

Center for Childhood Infections and Vaccines (CCIV), Atlanta, Georgia, USA.

Children's Healthcare of Atlanta, Atlanta, Georgia, USA.

出版信息

J Virol. 2020 Sep 15;94(19). doi: 10.1128/JVI.00985-20.

Abstract

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients. The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.

摘要

新出现的人类冠状病毒,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2),引起了呼吸道疾病的大流行。目前的证据表明,严重的 SARS-CoV-2 病例与免疫反应失调有关。然而,人们对先天免疫系统如何对 SARS-CoV-2 作出反应知之甚少。在这项研究中,我们使用原代人呼吸道上皮(pHAE)培养物来模拟 SARS-CoV-2 感染,这些培养物保持在气液界面。我们发现 SARS-CoV-2 感染并在 pHAE 培养物中复制,并定向释放到顶端,而不是基底外侧表面。转录谱研究发现,感染的 pHAE 培养物具有以促炎细胞因子和趋化因子诱导为主的分子特征,包括白细胞介素 6(IL-6)、肿瘤坏死因子-α(TNF-α)和 CXCL8,并确定 NF-κB 和 ATF-4 是这种促炎细胞因子反应的关键驱动因素。令人惊讶的是,我们观察到对 SARS-CoV-2 感染没有完全缺乏 I 型或 III 型干扰素(IFN)反应。然而,I 型和 III 型 IFN 的预处理和后处理可显著降低 pHAE 培养物中的病毒复制,这与抗病毒效应基因的上调相关。综上所述,我们的研究表明 SARS-CoV-2 不会引发 IFN 反应,但对 I 型和 III 型 IFN 的作用敏感。我们的研究表明,pHAE 培养物可用于模拟 SARS-CoV-2 感染,I 型和 III 型 IFN 均可作为治疗 COVID-19 患者的治疗选择。目前正在发生的呼吸道疾病大流行,COVID-19,是由一种名为 SARS-CoV-2 的新出现的冠状病毒引起的。这种病毒感染气道和肺细胞,引起发热、干咳和呼吸急促。严重的 COVID-19 病例可导致肺部损伤、低血氧水平甚至死亡。由于目前尚无批准用于人类的疫苗,因此迫切需要研究 SARS-CoV-2 感染的机制。我们的研究确定了一个极好的系统来模拟 SARS-CoV-2 对人类气道的感染,可用于测试各种治疗方法。对该模型系统中的感染分析发现,人呼吸道上皮细胞培养物诱导强烈的促炎细胞因子反应,但阻止 SARS-CoV-2 产生 I 型和 III 型干扰素。然而,用免疫分子 I 型或 III 型干扰素(IFN)治疗气道培养物能够抑制 SARS-CoV-2 感染。因此,我们的模型系统确定 I 型或 III 型 IFN 作为 COVID-19 患者的潜在抗病毒治疗方法。

相似文献

3
CCR2 Signaling Restricts SARS-CoV-2 Infection.
mBio. 2021 Dec 21;12(6):e0274921. doi: 10.1128/mBio.02749-21. Epub 2021 Nov 9.
4
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
5
Physical interventions to interrupt or reduce the spread of respiratory viruses.
Cochrane Database Syst Rev. 2023 Jan 30;1(1):CD006207. doi: 10.1002/14651858.CD006207.pub6.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings.
Cochrane Database Syst Rev. 2022 May 6;5(5):CD015112. doi: 10.1002/14651858.CD015112.pub2.
8
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
9
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
10
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.

引用本文的文献

2
Heat-killed suppresses SARS-CoV-2 infection in the human intestinal epithelial cell line Caco-2.
Front Cell Infect Microbiol. 2025 Jul 31;15:1556344. doi: 10.3389/fcimb.2025.1556344. eCollection 2025.
3
SARS-CoV-2 infection induces ZBP1-dependent PANoptosis in bystander cells.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2500208122. doi: 10.1073/pnas.2500208122. Epub 2025 Jul 8.
5
Insights into biological therapeutic strategies for COVID-19.
Fundam Res. 2021 Mar;1(2):166-178. doi: 10.1016/j.fmre.2021.02.001. Epub 2021 Feb 4.
8
Anti-SARS-CoV-2 Small Molecule Targeting of Oxysterol-Binding Protein (OSBP) Activates Cellular Antiviral Innate Immunity.
ACS Infect Dis. 2025 May 9;11(5):1064-1077. doi: 10.1021/acsinfecdis.4c00631. Epub 2025 Apr 21.
9
CD73/adenosine dynamics in treatment-induced pneumonitis: balancing efficacy with risks of adverse events in combined radio-immunotherapies.
Front Cell Dev Biol. 2025 Jan 13;12:1471072. doi: 10.3389/fcell.2024.1471072. eCollection 2024.
10
RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm?
J Innate Immun. 2025;17(1):126-153. doi: 10.1159/000543608. Epub 2025 Jan 16.

本文引用的文献

1
Interferon-α2b Treatment for COVID-19.
Front Immunol. 2020 May 15;11:1061. doi: 10.3389/fimmu.2020.01061. eCollection 2020.
2
SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract.
Cell. 2020 Jul 23;182(2):429-446.e14. doi: 10.1016/j.cell.2020.05.042. Epub 2020 May 27.
3
Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19.
Cell. 2020 May 28;181(5):1036-1045.e9. doi: 10.1016/j.cell.2020.04.026. Epub 2020 May 15.
4
SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes.
Nat Med. 2020 May;26(5):681-687. doi: 10.1038/s41591-020-0868-6. Epub 2020 Apr 23.
5
An Infectious cDNA Clone of SARS-CoV-2.
Cell Host Microbe. 2020 May 13;27(5):841-848.e3. doi: 10.1016/j.chom.2020.04.004. Epub 2020 Apr 13.
6
Clinical and immunological features of severe and moderate coronavirus disease 2019.
J Clin Invest. 2020 May 1;130(5):2620-2629. doi: 10.1172/JCI137244.
7
Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States.
Emerg Infect Dis. 2020 Jun;26(6):1266-1273. doi: 10.3201/eid2606.200516. Epub 2020 Jun 17.
8
Detection of SARS-CoV-2 in Different Types of Clinical Specimens.
JAMA. 2020 May 12;323(18):1843-1844. doi: 10.1001/jama.2020.3786.
9
Identification of Coronavirus Isolated from a Patient in Korea with COVID-19.
Osong Public Health Res Perspect. 2020 Feb;11(1):3-7. doi: 10.24171/j.phrp.2020.11.1.02.
10
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验