Jalalahmadi Golnaz, Helguera María, Linte Cristian A
Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, USA.
Instituto Tecnológico José Mario Molina Pasquel y Henríquez - Unidad Lagos de Moreno, Jalisco, México.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549277. Epub 2020 Feb 28.
Recent studies monitoring severity of abdominal aortic aneurysm (AAA) suggested that reliance on only the maximum transverse diameter ( ) may be insufficient to predict AAA rupture risk. Moreover, geometric indices, biomechanical parameters, material properties, and patient-specific historical data affect AAA morphology, indicating the need for an integrative approach that incorporates all factors for more accurate estimation of AAA severity. We implemented a machine learning algorithm using 45 features extracted from 66 patients. The model was generated using the J48 decision tree algorithm with the aim of maximizing model accuracy. Three different feature sets were used to assess the prediction rate: i) using as a single-feature set, ii) using a set of all features, and, lastly iii) using a feature set selected via the BestFirst feature selection algorithm. Our results indicate that BestFirst feature selection yielded the highest prediction accuracy. These results indicate that a combination of several specific parameters that comprehensively capture AAA behavior may enable a suitable assessment of AAA severity, suggesting the potential benefit of machine learning for this application.
最近监测腹主动脉瘤(AAA)严重程度的研究表明,仅依靠最大横径( )可能不足以预测AAA破裂风险。此外,几何指数、生物力学参数、材料特性和患者特定的历史数据会影响AAA形态,这表明需要一种综合方法,纳入所有因素以更准确地估计AAA严重程度。我们使用从66名患者中提取的45个特征实现了一种机器学习算法。该模型使用J48决策树算法生成,目的是最大化模型准确性。使用了三种不同的特征集来评估预测率:i)将 用作单一特征集,ii)使用所有特征的集合,最后iii)使用通过BestFirst特征选择算法选择的特征集。我们的结果表明,BestFirst特征选择产生了最高的预测准确性。这些结果表明,综合捕获AAA行为的几个特定参数的组合可能有助于对AAA严重程度进行适当评估,这表明机器学习在此应用中的潜在益处。