Suppr超能文献

一种使用几何、生物力学和患者特定历史临床特征的机器学习方法用于腹主动脉瘤严重程度评估。

A machine leaning approach for abdominal aortic aneurysm severity assessment using geometric, biomechanical, and patient-specific historical clinical features.

作者信息

Jalalahmadi Golnaz, Helguera María, Linte Cristian A

机构信息

Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, USA.

Instituto Tecnológico José Mario Molina Pasquel y Henríquez - Unidad Lagos de Moreno, Jalisco, México.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549277. Epub 2020 Feb 28.

Abstract

Recent studies monitoring severity of abdominal aortic aneurysm (AAA) suggested that reliance on only the maximum transverse diameter ( ) may be insufficient to predict AAA rupture risk. Moreover, geometric indices, biomechanical parameters, material properties, and patient-specific historical data affect AAA morphology, indicating the need for an integrative approach that incorporates all factors for more accurate estimation of AAA severity. We implemented a machine learning algorithm using 45 features extracted from 66 patients. The model was generated using the J48 decision tree algorithm with the aim of maximizing model accuracy. Three different feature sets were used to assess the prediction rate: i) using as a single-feature set, ii) using a set of all features, and, lastly iii) using a feature set selected via the BestFirst feature selection algorithm. Our results indicate that BestFirst feature selection yielded the highest prediction accuracy. These results indicate that a combination of several specific parameters that comprehensively capture AAA behavior may enable a suitable assessment of AAA severity, suggesting the potential benefit of machine learning for this application.

摘要

最近监测腹主动脉瘤(AAA)严重程度的研究表明,仅依靠最大横径( )可能不足以预测AAA破裂风险。此外,几何指数、生物力学参数、材料特性和患者特定的历史数据会影响AAA形态,这表明需要一种综合方法,纳入所有因素以更准确地估计AAA严重程度。我们使用从66名患者中提取的45个特征实现了一种机器学习算法。该模型使用J48决策树算法生成,目的是最大化模型准确性。使用了三种不同的特征集来评估预测率:i)将 用作单一特征集,ii)使用所有特征的集合,最后iii)使用通过BestFirst特征选择算法选择的特征集。我们的结果表明,BestFirst特征选择产生了最高的预测准确性。这些结果表明,综合捕获AAA行为的几个特定参数的组合可能有助于对AAA严重程度进行适当评估,这表明机器学习在此应用中的潜在益处。

相似文献

5
(PEAK) WALL STRESS AS AN INDICATOR OF ABDOMINAL AORTIC ANEURYSM SEVERITY.(峰值)壁应力作为腹主动脉瘤严重程度的指标。
Proc IEEE West N Y Image Signal Process Workshop. 2018 Oct;2018. doi: 10.1109/WNYIPW.2018.8576453. Epub 2018 Dec 17.
6
Geometric surrogates of abdominal aortic aneurysm wall mechanics.腹主动脉瘤壁力学的几何替代指标。
Med Eng Phys. 2018 Sep;59:43-49. doi: 10.1016/j.medengphy.2018.06.007. Epub 2018 Jul 10.

本文引用的文献

1
(PEAK) WALL STRESS AS AN INDICATOR OF ABDOMINAL AORTIC ANEURYSM SEVERITY.(峰值)壁应力作为腹主动脉瘤严重程度的指标。
Proc IEEE West N Y Image Signal Process Workshop. 2018 Oct;2018. doi: 10.1109/WNYIPW.2018.8576453. Epub 2018 Dec 17.
5
Geometric surrogates of abdominal aortic aneurysm wall mechanics.腹主动脉瘤壁力学的几何替代指标。
Med Eng Phys. 2018 Sep;59:43-49. doi: 10.1016/j.medengphy.2018.06.007. Epub 2018 Jul 10.
6
Biomechanical changes during abdominal aortic aneurysm growth.腹主动脉瘤生长过程中的生物力学变化。
PLoS One. 2017 Nov 7;12(11):e0187421. doi: 10.1371/journal.pone.0187421. eCollection 2017.
8
The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms.自噬在腹主动脉瘤发病机制中的推测作用。
Atherosclerosis. 2017 Feb;257:288-296. doi: 10.1016/j.atherosclerosis.2017.01.017. Epub 2017 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验