Suppr超能文献

复发环境下多发性骨髓瘤患者新型风险分层算法的方法学

Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting.

作者信息

Bouwmeester Walter, Briggs Andrew, van Hout Ben, Hájek Roman, Gonzalez-McQuire Sebastian, Campioni Marco, DeCosta Lucy, Brozova Lucie

机构信息

Pharmerit International, Rotterdam, The Netherlands.

Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.

出版信息

Oncol Ther. 2019 Dec;7(2):141-157. doi: 10.1007/s40487-019-00100-5. Epub 2019 Nov 3.

Abstract

INTRODUCTION

Risk stratification tools provide valuable information to inform treatment decisions. Existing algorithms for patients with multiple myeloma (MM) were based on patients with newly diagnosed disease, and these have not been validated in the relapsed setting or in routine clinical practice. We developed a risk stratification algorithm (RSA) for patients with MM at initiation of second-line (2L) treatment, based on data from the Czech Registry of Monoclonal Gammopathies.

METHODS

Predictors of overall survival (OS) at 2L treatment were identified using Cox proportional hazards models and backward selection. Risk scores were obtained by multiplying the hazard ratios for each predictor. The K-adaptive partitioning for survival (KAPS) algorithm defined four groups of stratification based on individual risk scores.

RESULTS

Performance of the RSA was assessed using Nagelkerke's R test and Harrell's concordance index through Kaplan-Meier analysis of OS data. Prognostic groups were successfully defined based on real-world data. Use of a multiplicative score based on Cox modeling and KAPS to define cut-off values was effective.

CONCLUSION

Through innovative methods of risk assessment and collaboration between physicians and statisticians, the RSA was capable of stratifying patients at 2L treatment by survival expectations. This approach can be used to develop clinical decision-making tools in other disease areas to improve patient management.

FUNDING

Amgen Europe GmbH.

摘要

引言

风险分层工具为治疗决策提供了有价值的信息。现有的多发性骨髓瘤(MM)患者算法是基于新诊断疾病的患者,这些算法尚未在复发情况下或常规临床实践中得到验证。我们基于捷克单克隆丙种球蛋白病登记处的数据,为二线(2L)治疗开始时的MM患者开发了一种风险分层算法(RSA)。

方法

使用Cox比例风险模型和向后选择法确定2L治疗时总生存期(OS)的预测因素。通过将每个预测因素的风险比相乘获得风险评分。生存K自适应划分(KAPS)算法根据个体风险评分定义了四组分层。

结果

通过对OS数据进行Kaplan-Meier分析,使用Nagelkerke's R检验和Harrell一致性指数评估RSA的性能。基于真实世界数据成功定义了预后组。使用基于Cox建模和KAPS的乘法评分来定义临界值是有效的。

结论

通过创新的风险评估方法以及医生与统计学家之间的合作,RSA能够根据生存预期对2L治疗的患者进行分层。这种方法可用于在其他疾病领域开发临床决策工具,以改善患者管理。

资助

安进欧洲有限公司。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007c/7359995/31e7dce5da04/40487_2019_100_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验