文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

当事件数量较少时,如何开发一个更准确的风险预测模型。

How to develop a more accurate risk prediction model when there are few events.

作者信息

Pavlou Menelaos, Ambler Gareth, Seaman Shaun R, Guttmann Oliver, Elliott Perry, King Michael, Omar Rumana Z

机构信息

Department of Statistical Science, University College London, WC1E 6BT London, UK

Department of Statistical Science, University College London, WC1E 6BT London, UK.

出版信息

BMJ. 2015 Aug 11;351:h3868. doi: 10.1136/bmj.h3868.


DOI:10.1136/bmj.h3868
PMID:26264962
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4531311/
Abstract

When the number of events is low relative to the number of predictors, standard regression could produce overfitted risk models that make inaccurate predictions. Use of penalised regression may improve the accuracy of risk prediction

摘要

当事件数量相对于预测变量数量较少时,标准回归可能会产生过度拟合的风险模型,从而做出不准确的预测。使用惩罚回归可能会提高风险预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b7/4784839/8609109df015/pavm022798.f2_default.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b7/4784839/61f3b7163279/pavm022798.f1_default.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b7/4784839/8609109df015/pavm022798.f2_default.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b7/4784839/61f3b7163279/pavm022798.f1_default.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b7/4784839/8609109df015/pavm022798.f2_default.jpg

相似文献

[1]
How to develop a more accurate risk prediction model when there are few events.

BMJ. 2015-8-11

[2]
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.

Bioinformatics. 2005-7-1

[3]
Estimating the probability of rare events: addressing zero failure data.

Risk Anal. 2011-1-14

[4]
Mixed-effect hybrid models for longitudinal data with nonignorable dropout.

Biometrics. 2009-6

[5]
Assessment of risks by predicting counterfactuals.

Stat Med. 2009-12-30

[6]
Robust inference in the negative binomial regression model with an application to falls data.

Biometrics. 2014-12

[7]
Improved cardiovascular risk prediction using nonparametric regression and electronic health record data.

Med Care. 2013-3

[8]
On the importance of accounting for competing risks in pediatric brain cancer: II. Regression modeling and sample size.

Int J Radiat Oncol Biol Phys. 2010-5-14

[9]
[Regression modeling strategies].

Rev Esp Cardiol. 2011-6

[10]
Prediction models for clustered data: comparison of a random intercept and standard regression model.

BMC Med Res Methodol. 2013-2-15

引用本文的文献

[1]
Risk prediction model for overall survival in lung cancer based on inflammatory and nutritional markers.

Sci Rep. 2025-8-22

[2]
Burnout among intensive care physicians and nurses in the post-pandemic era in China: a national cross-sectional study.

BMJ Open. 2025-8-22

[3]
Development and validation of a machine learning model for prediction of cephalic dystocia.

BMC Pregnancy Childbirth. 2025-8-18

[4]
The predictive value of social cognition assessment for 1-year follow-up functional outcomes in behavioral variant frontotemporal dementia.

J Neurol. 2025-7-21

[5]
Maternal near-miss prediction model development in Bahir Dar city administration, Northwest Ethiopia.

PLoS One. 2025-7-10

[6]
Development and validation of a nomogram for local control prediction in lung cancer patients treated with stereotactic body radiation therapy based on clinical, dosimetric, and inflammation-related parameters.

BMC Pulm Med. 2025-7-10

[7]
A practical guide for nephrologist peer reviewers: evaluating artificial intelligence and machine learning research in nephrology.

Ren Fail. 2025-12

[8]
Developing and validating a risk prediction model for caesarean delivery in Northwest Amhara comprehensive specialized hospitals.

BMC Pregnancy Childbirth. 2025-7-2

[9]
Letter to: Predictors of postoperative delirium in patients undergoing radical prostatectomy: a prospective study.

Support Care Cancer. 2025-6-30

[10]
Variable selection for causal inference, prediction, and descriptive research: a narrative review of recommendations.

Eur Heart J Open. 2025-6-4

本文引用的文献

[1]
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.

BMJ. 2015-1-7

[2]
Meta-analysis and aggregation of multiple published prediction models.

Stat Med. 2014-6-30

[3]
A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD).

Eur Heart J. 2013-10-14

[4]
An evaluation of penalised survival methods for developing prognostic models with rare events.

Stat Med. 2011-10-14

[5]
Assessing the performance of prediction models: a framework for traditional and novel measures.

Epidemiology. 2010-1

[6]
Prognosis and prognostic research: application and impact of prognostic models in clinical practice.

BMJ. 2009-6-4

[7]
Prognosis and prognostic research: what, why, and how?

BMJ. 2009-2-23

[8]
General cardiovascular risk profile for use in primary care: the Framingham Heart Study.

Circulation. 2008-2-12

[9]
Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study.

BMJ. 2007-7-21

[10]
Generic, simple risk stratification model for heart valve surgery.

Circulation. 2005-7-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索