Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
Environ Sci Technol. 2020 Aug 18;54(16):10057-10067. doi: 10.1021/acs.est.0c02297. Epub 2020 Aug 7.
A generic theoretical framework is presented for describing the kinetics of uptake and release of organic compounds that associate with plastic particles. The underlying concepts account for the physicochemical features of the target organic compounds and the plastic particles. The developed framework builds on concepts established for dynamic speciation analysis by solid-phase microextraction and the size-dependent reactivity features of particulate complexants. The theoretical framework is applied to interpretation of literature data, thereby providing more rigorous insights into previous observations. The presented concepts enable predictions of the sink/source functioning of plastic particles and their impact on the dynamic chemical speciation of organic compounds in aqueous environmental media and within biota. Our results highlight the fundamental influence of particle size on the uptake and release kinetics. The findings call for a comprehensive description of the physicochemical features of plastic particles to be provided in experimental studies on micro- and nanoplastics in different types of aquatic environmental media.
提出了一个通用的理论框架,用于描述与塑料颗粒结合的有机化合物的吸收和释放动力学。基本概念考虑了目标有机化合物和塑料颗粒的物理化学特性。所开发的框架基于固相微萃取的动态形态分析概念以及颗粒状络合剂的尺寸依赖性反应性特征。该理论框架应用于解释文献数据,从而对先前的观察结果提供更严格的见解。所提出的概念能够预测塑料颗粒的汇/源功能及其对水环境污染介质中有机化合物的动态化学形态和生物体内有机化合物的动态化学形态的影响。我们的结果强调了颗粒大小对吸收和释放动力学的根本影响。这些发现要求在不同类型的水环境污染介质中进行微塑料和纳米塑料的实验研究中,全面描述塑料颗粒的物理化学特性。