Suppr超能文献

基于 LC-MS 代谢组学的数据建模的特征选择方法。

An approach for feature selection with data modelling in LC-MS metabolomics.

机构信息

Lomonosov Moscow State University, Chemistry Department, 119992, GSP-2, Lenin Hills, 1b3, Moscow, Russia.

出版信息

Anal Methods. 2020 Jul 28;12(28):3582-3591. doi: 10.1039/d0ay00204f. Epub 2020 Jul 8.

Abstract

The data processing workflow for LC-MS based metabolomics study is suggested with signal drift correction, univariate analysis, supervised learning, feature selection and unsupervised modelling. The proposed approach requires only an annotation-free peak table and produces an extremely reduced set of the most relevant features together with validation via Receiver Operating Characteristic analysis for selected predictors, cross-validation and unsupervised projection. The presented study was initially optimised by its own experimental set and then was successfully tested by using 36 datasets from 21 publicly available metabolomics projects. The suggested workflow can be used for classification purposes in high dimensional metabolomics studies and as a first step in exploratory analysis, data projection, biomarker selection, data integration and fusion.

摘要

基于 LC-MS 的代谢组学研究的数据处理工作流程建议进行信号漂移校正、单变量分析、监督学习、特征选择和无监督建模。该方法仅需要一个无注释的峰表,并通过接收器操作特征分析为选定的预测因子、交叉验证和无监督投影生成最相关特征的极其简化集。该研究最初通过其自身的实验集进行了优化,然后成功地使用来自 21 个公共代谢组学项目的 36 个数据集进行了测试。所建议的工作流程可用于高维代谢组学研究中的分类目的,也可作为探索性分析、数据投影、生物标志物选择、数据集成和融合的第一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验