Suppr超能文献

使用 MetaboAnnotatoR 对非靶向全离子碎裂 LC-MS 代谢组学数据进行自动注释。

Automated Annotation of Untargeted All-Ion Fragmentation LC-MS Metabolomics Data with MetaboAnnotatoR.

机构信息

Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London SW7 2AZ, U.K.

Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, U.K.

出版信息

Anal Chem. 2022 Mar 1;94(8):3446-3455. doi: 10.1021/acs.analchem.1c03032. Epub 2022 Feb 18.

Abstract

Untargeted metabolomics and lipidomics LC-MS experiments produce complex datasets, usually containing tens of thousands of features from thousands of metabolites whose annotation requires additional MS/MS experiments and expert knowledge. All-ion fragmentation (AIF) LC-MS/MS acquisition provides fragmentation data at no additional experimental time cost. However, analysis of such datasets requires reconstruction of parent-fragment relationships and annotation of the resulting pseudo-MS/MS spectra. Here, we propose a novel approach for automated annotation of isotopologues, adducts, and in-source fragments from AIF LC-MS datasets by combining correlation-based parent-fragment linking with molecular fragment matching. Our workflow focuses on a subset of features rather than trying to annotate the full dataset, saving time and simplifying the process. We demonstrate the workflow in three human serum datasets containing 599 features manually annotated by experts. Precision and recall values of 82-92% and 82-85%, respectively, were obtained for features found in the highest-rank scores (1-5). These results equal or outperform those obtained using MS-DIAL software, the current state of the art for AIF data annotation. Further validation for other biological matrices and different instrument types showed variable precision (60-89%) and recall (10-88%) particularly for datasets dominated by nonlipid metabolites. The workflow is freely available as an open-source R package, MetaboAnnotatoR, together with the fragment libraries from Github (https://github.com/gggraca/MetaboAnnotatoR).

摘要

非靶向代谢组学和脂质组学 LC-MS 实验会产生复杂的数据集,通常包含来自数千种代谢物的数万个特征,这些代谢物的注释需要额外的 MS/MS 实验和专业知识。全离子碎裂(AIF)LC-MS/MS 采集在不增加额外实验时间成本的情况下提供碎裂数据。然而,对这类数据集的分析需要重建母-碎片关系,并对生成的伪-MS/MS 光谱进行注释。在这里,我们提出了一种新的方法,通过结合基于相关性的母-碎片链接和分子碎片匹配,从 AIF LC-MS 数据集自动注释同位素、加合物和源内碎片。我们的工作流程专注于特征的一个子集,而不是试图注释整个数据集,从而节省时间并简化流程。我们在三个包含 599 个由专家手动注释的特征的人血清数据集中演示了该工作流程。对于在最高排名分数(1-5)中找到的特征,获得了 82-92%的精确率和 82-85%的召回率。这些结果与使用 MS-DIAL 软件获得的结果相当或更好,MS-DIAL 软件是目前 AIF 数据注释的最新技术。对其他生物基质和不同仪器类型的进一步验证显示,精度(60-89%)和召回率(10-88%)变化较大,特别是对于主要由非脂质代谢物组成的数据集。该工作流程作为一个开源 R 包 MetaboAnnotatoR 免费提供,并与来自 Github 的片段库(https://github.com/gggraca/MetaboAnnotatoR)一起提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2efa/8892435/464ec532d1b6/ac1c03032_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验