Suppr超能文献

treeheatr:一个用于可解释决策树可视化的 R 包。

treeheatr: an R package for interpretable decision tree visualizations.

机构信息

Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Bioinformatics. 2021 Apr 19;37(2):282-284. doi: 10.1093/bioinformatics/btaa662.

Abstract

SUMMARY

treeheatr is an R package for creating interpretable decision tree visualizations with the data represented as a heatmap at the tree's leaf nodes. The integrated presentation of the tree structure along with an overview of the data efficiently illustrates how the tree nodes split up the feature space and how well the tree model performs. This visualization can also be examined in depth to uncover the correlation structure in the data and importance of each feature in predicting the outcome. Implemented in an easily installed package with a detailed vignette, treeheatr can be a useful teaching tool to enhance students' understanding of a simple decision tree model before diving into more complex tree-based machine learning methods.

AVAILABILITY AND IMPLEMENTATION

The treeheatr package is freely available under the permissive MIT license at https://trang1618.github.io/treeheatr and https://cran.r-project.org/package=treeheatr. It comes with a detailed vignette that is automatically built with GitHub Actions continuous integration.

摘要

摘要

treeheatr 是一个 R 包,用于创建可解释的决策树可视化,数据以树的叶节点处的热图表示。树结构的集成表示以及数据概述有效地说明了树节点如何划分特征空间以及树模型的性能如何。还可以深入检查此可视化以揭示数据中的相关结构以及每个特征在预测结果中的重要性。treeheatr 以易于安装的软件包实现,并附有详细的说明,它可以作为一个有用的教学工具,帮助学生在深入研究更复杂的基于树的机器学习方法之前,加深对简单决策树模型的理解。

可用性和实现

treeheatr 软件包在 permissive MIT 许可证下免费提供,网址为 https://trang1618.github.io/treeheatrhttps://cran.r-project.org/package=treeheatr。它附有一个详细的说明,该说明是通过 GitHub Actions 持续集成自动生成的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb96/8055220/554fa2858c9e/btaa662f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验