Suppr超能文献

哪些人更容易受到细颗粒物(PM2.5)污染影响:一种基于手机数据的方法。

Who are more exposed to PM2.5 pollution: A mobile phone data approach.

作者信息

Guo Huagui, Li Weifeng, Yao Fei, Wu Jiansheng, Zhou Xingang, Yue Yang, Yeh Anthony G O

机构信息

Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, PR China.

School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.

出版信息

Environ Int. 2020 Oct;143:105821. doi: 10.1016/j.envint.2020.105821. Epub 2020 Jul 20.

Abstract

BACKGROUND

Few studies have examined exposure disparity to ambient air pollution outside North America and Europe. Moreover, very few studies have investigated exposure disparity in terms of individual-level data or at multi-temporal scales.

OBJECTIVES

This work aims to examine the associations between individual- and neighbourhood-level economic statuses and individual exposure to PM2.5 across multi-temporal scales.

METHODS

The study population included 742,220 mobile phone users on a weekday in Shenzhen, China. A geo-informed backward propagation neural network model was developed to estimate hourly PM2.5 concentrations by the use of remote sensing and geospatial big data, which were then combined with individual trajectories to estimate individual total exposure during weekdays at multi-temporal scales. Coupling the estimated PM2.5 exposure with housing price, we examined the associations between individual- and neighbourhood-level economic statuses and individual exposure using linear regression and two-level hierarchical linear models. Furthermore, we performed five sensitivity analyses to test the robustness of the two-level effects.

RESULTS

We found positive associations between individual- and neighbourhood-level economic statuses and individual PM2.5 exposure at a daytime, daily, weekly, monthly, seasonal or annual scale. Findings on the effects of the two-level economic statuses were generally robust in the five sensitivity analyses. In particular, despite the insignificant effects observed in three of newly selected time periods in the sensitivity analysis, individual- and neighbourhood-level economic statuses were still positively associated with individual total exposure during each of other newly selected periods (including three other seasons).

CONCLUSIONS

There are statistically positive associations of individual PM2.5 exposure with individual- and neighbourhood-level economic statuses. That is, people living in areas with higher residential property prices are more exposed to PM2.5 pollution. Findings emphasize the need for public health intervention and urban planning initiatives targeting socio-economic disparity in ambient air pollution exposure, thus alleviating health disparities across socioeconomic groups.

摘要

背景

很少有研究考察北美和欧洲以外地区暴露于环境空气污染的差异。此外,极少有研究从个体层面数据或多时间尺度方面调查暴露差异。

目的

本研究旨在考察个体和邻里层面经济状况与个体在多时间尺度下暴露于细颗粒物(PM2.5)之间的关联。

方法

研究对象为中国深圳一个工作日的742,220名手机用户。利用遥感和地理空间大数据开发了一种地理信息反向传播神经网络模型,以估算每小时的PM2.5浓度,然后将其与个体轨迹相结合,以估算工作日期间多时间尺度下的个体总暴露量。将估算的PM2.5暴露量与房价相结合,我们使用线性回归和两级分层线性模型考察个体和邻里层面经济状况与个体暴露之间的关联。此外,我们进行了五项敏感性分析,以检验两级效应的稳健性。

结果

我们发现,在白天、每日、每周、每月、季节或年度尺度下,个体和邻里层面经济状况与个体PM2.5暴露之间存在正相关。在五项敏感性分析中,两级经济状况效应的研究结果总体上较为稳健。特别是,尽管在敏感性分析中新选的三个时间段中观察到效应不显著,但在其他每个新选时间段(包括其他三个季节),个体和邻里层面经济状况仍与个体总暴露呈正相关。

结论

个体PM2.5暴露与个体和邻里层面经济状况之间在统计学上存在正相关。也就是说,居住在房价较高地区的人们更多地暴露于PM2.5污染。研究结果强调了针对环境空气污染暴露方面社会经济差异进行公共卫生干预和城市规划举措的必要性,从而减轻社会经济群体间的健康差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验