Suppr超能文献

移动电话数据:技术、特点和应用调查。

Mobile Phone Data: A Survey of Techniques, Features, and Applications.

机构信息

Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia.

Department of Information Technology and Security, Jazan University, Jazan 45142, Saudi Arabia.

出版信息

Sensors (Basel). 2023 Jan 12;23(2):908. doi: 10.3390/s23020908.

Abstract

Due to the rapid growth in the use of smartphones, the digital traces (e.g., mobile phone data, call detail records) left by the use of these devices have been widely employed to assess and predict human communication behaviors and mobility patterns in various disciplines and domains, such as urban sensing, epidemiology, public transportation, data protection, and criminology. These digital traces provide significant spatiotemporal (geospatial and time-related) data, revealing people's mobility patterns as well as communication (incoming and outgoing calls) data, revealing people's social networks and interactions. Thus, service providers collect smartphone data by recording the details of every user activity or interaction (e.g., making a phone call, sending a text message, or accessing the internet) done using a smartphone and storing these details on their databases. This paper surveys different methods and approaches for assessing and predicting human communication behaviors and mobility patterns from mobile phone data and differentiates them in terms of their strengths and weaknesses. It also gives information about spatial, temporal, and call characteristics that have been extracted from mobile phone data and used to model how people communicate and move. We survey mobile phone data research published between 2013 and 2021 from eight main databases, namely, the ACM Digital Library, IEEE Xplore, MDPI, SAGE, Science Direct, Scopus, SpringerLink, and Web of Science. Based on our inclusion and exclusion criteria, 148 studies were selected.

摘要

由于智能手机的使用迅速增长,这些设备所产生的数字痕迹(例如,移动电话数据、通话记录详情)已被广泛应用于评估和预测人类在不同学科和领域的交流行为和移动模式,如城市感应、流行病学、公共交通、数据保护和犯罪学。这些数字痕迹提供了重要的时空(地理空间和时间相关)数据,揭示了人们的移动模式以及通信(来电和去电)数据,揭示了人们的社交网络和互动。因此,服务提供商通过记录智能手机用户使用智能手机进行的每项活动或交互(例如,打电话、发短信或上网)的详细信息,并将这些详细信息存储在其数据库中,来收集智能手机数据。本文调查了从移动电话数据中评估和预测人类通信行为和移动模式的不同方法和途径,并根据它们的优缺点对其进行了区分。它还介绍了从移动电话数据中提取并用于建模人们如何进行通信和移动的空间、时间和通话特征。我们从八个主要数据库(即 ACM 数字图书馆、IEEE Xplore、MDPI、SAGE、Science Direct、Scopus、SpringerLink 和 Web of Science)中调查了 2013 年至 2021 年间发表的移动电话数据研究。根据我们的纳入和排除标准,共选择了 148 项研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0546/9865984/d9e1cb1aa085/sensors-23-00908-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验