Westling Ted, Carone Marco
Center for Causal Inference, University of Pennsylvania.
Department of Biostatistics, University of Washington.
Ann Stat. 2020 Apr;48(2):1001-1024. doi: 10.1214/19-aos1835. Epub 2020 May 26.
The problem of nonparametric inference on a monotone function has been extensively studied in many particular cases. Estimators considered have often been of so-called Grenander type, being representable as the left derivative of the greatest convex minorant or least concave majorant of an estimator of a primitive function. In this paper, we provide general conditions for consistency and pointwise convergence in distribution of a class of generalized Grenander-type estimators of a monotone function. This broad class allows the minorization or majoratization operation to be performed on a data-dependent transformation of the domain, possibly yielding benefits in practice. Additionally, we provide simpler conditions and more concrete distributional theory in the important case that the primitive estimator and data-dependent transformation function are asymptotically linear. We use our general results in the context of various well-studied problems, and show that we readily recover classical results established separately in each case. More importantly, we show that our results allow us to tackle more challenging problems involving parameters for which the use of flexible learning strategies appears necessary. In particular, we study inference on monotone density and hazard functions using informatively right-censored data, extending the classical work on independent censoring, and on a covariate-marginalized conditional mean function, extending the classical work on monotone regression functions.
在许多特定情况下,对单调函数的非参数推断问题已得到广泛研究。所考虑的估计量通常是所谓的格伦南德(Grenander)型,可表示为原函数估计量的最大凸下包络或最小凹上包络的左导数。在本文中,我们给出了一类单调函数的广义格伦南德型估计量在分布上的一致性和逐点收敛的一般条件。这类广泛的估计量允许在依赖于数据的定义域变换上进行下包络或上包络操作,这在实际中可能会带来好处。此外,在原估计量和依赖于数据的变换函数渐近线性的重要情况下,我们给出了更简单的条件和更具体的分布理论。我们将一般结果应用于各种已充分研究的问题,并表明我们很容易恢复在每种情况下分别建立的经典结果。更重要的是,我们表明我们的结果使我们能够处理更具挑战性的问题,这些问题涉及似乎有必要使用灵活学习策略的参数。特别是,我们使用信息性右删失数据研究单调密度和风险函数的推断,扩展了关于独立删失的经典工作,以及关于协变量边际化条件均值函数的推断,扩展了关于单调回归函数的经典工作。