van der Laan Lars, Ulloa-Pérez Ernesto, Carone Marco, Luedtke Alex
Department of Statistics, University of Washington, USA.
Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, USA.
Proc Mach Learn Res. 2023 Jul;202:34831-34854.
We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors of heterogeneous treatment effects. In addition, we introduce a novel data-efficient variant of calibration that avoids the need for hold-out calibration sets, which we refer to as cross-calibration. Causal isotonic cross-calibration takes cross-fitted predictors and outputs a single calibrated predictor obtained using all available data. We establish under weak conditions that causal isotonic calibration and cross-calibration both achieve fast doubly-robust calibration rates so long as either the propensity score or outcome regression is estimated well in an appropriate sense. The proposed causal isotonic calibrator can be wrapped around any black-box learning algorithm to provide strong distribution-free calibration guarantees while preserving predictive performance.
我们提出了因果等距校准方法,这是一种用于校准异质治疗效果预测器的新型非参数方法。此外,我们引入了一种新型的校准数据高效变体,它无需留出校准集,我们将其称为交叉校准。因果等距交叉校准采用交叉拟合的预测器,并输出一个使用所有可用数据获得的单一校准预测器。我们在弱条件下证明,只要倾向得分或结果回归在适当意义上估计良好,因果等距校准和交叉校准都能实现快速的双重稳健校准率。所提出的因果等距校准器可以应用于任何黑箱学习算法,以提供强大的无分布校准保证,同时保持预测性能。