Suppr超能文献

针对异质性治疗效果的因果等渗校准

Causal isotonic calibration for heterogeneous treatment effects.

作者信息

van der Laan Lars, Ulloa-Pérez Ernesto, Carone Marco, Luedtke Alex

机构信息

Department of Statistics, University of Washington, USA.

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, USA.

出版信息

Proc Mach Learn Res. 2023 Jul;202:34831-34854.

Abstract

We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors of heterogeneous treatment effects. In addition, we introduce a novel data-efficient variant of calibration that avoids the need for hold-out calibration sets, which we refer to as cross-calibration. Causal isotonic cross-calibration takes cross-fitted predictors and outputs a single calibrated predictor obtained using all available data. We establish under weak conditions that causal isotonic calibration and cross-calibration both achieve fast doubly-robust calibration rates so long as either the propensity score or outcome regression is estimated well in an appropriate sense. The proposed causal isotonic calibrator can be wrapped around any black-box learning algorithm to provide strong distribution-free calibration guarantees while preserving predictive performance.

摘要

我们提出了因果等距校准方法,这是一种用于校准异质治疗效果预测器的新型非参数方法。此外,我们引入了一种新型的校准数据高效变体,它无需留出校准集,我们将其称为交叉校准。因果等距交叉校准采用交叉拟合的预测器,并输出一个使用所有可用数据获得的单一校准预测器。我们在弱条件下证明,只要倾向得分或结果回归在适当意义上估计良好,因果等距校准和交叉校准都能实现快速的双重稳健校准率。所提出的因果等距校准器可以应用于任何黑箱学习算法,以提供强大的无分布校准保证,同时保持预测性能。

相似文献

2
Causal Isotonic Regression.因果等距回归
J R Stat Soc Series B Stat Methodol. 2020 Jul;82(3):719-747. doi: 10.1111/rssb.12372. Epub 2020 May 13.
7
Calibrating predictive model estimates to support personalized medicine.校准预测模型估计值以支持个性化医疗。
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):263-74. doi: 10.1136/amiajnl-2011-000291. Epub 2011 Oct 7.
9
Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models.使用近等渗回归模型集成的二元分类器校准
Proc IEEE Int Conf Data Min. 2016 Dec;2016:360-369. doi: 10.1109/ICDM.2016.0047. Epub 2017 Feb 2.
10
Stratified doubly robust estimators for the average causal effect.平均因果效应的分层双稳健估计量。
Biometrics. 2014 Jun;70(2):270-7. doi: 10.1111/biom.12157. Epub 2014 Feb 26.

引用本文的文献

本文引用的文献

2
A UNIFIED STUDY OF NONPARAMETRIC INFERENCE FOR MONOTONE FUNCTIONS.单调函数的非参数推断统一研究
Ann Stat. 2020 Apr;48(2):1001-1024. doi: 10.1214/19-aos1835. Epub 2020 May 26.
5
Entropy Learning for Dynamic Treatment Regimes.动态治疗方案的熵学习
Stat Sin. 2019;29(4):1633-1655. doi: 10.5705/ss.202018.0076.
7
Metalearners for estimating heterogeneous treatment effects using machine learning.使用机器学习估计异质处理效应的元学习器。
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. doi: 10.1073/pnas.1804597116. Epub 2019 Feb 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验