Suppr超能文献

在高 CO 浓度下植物生长过程中,独特的线粒体和叶绿体成分有助于维持碳平衡。

Distinctive mitochondrial and chloroplast components contributing to the maintenance of carbon balance during plant growth at elevated CO.

机构信息

Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough , Toronto, ON, Canada.

出版信息

Plant Signal Behav. 2020 Oct 2;15(10):1795395. doi: 10.1080/15592324.2020.1795395. Epub 2020 Jul 24.

Abstract

Plant carbon balance depends upon the difference between photosynthetic carbon gain and respiratory carbon loss. In C plants, growth at an elevated atmospheric concentration of CO (ECO) stimulates photosynthesis and raises the leaf carbohydrate status, but how respiration responds is less understood. In this study, growth of at ECO increased the protein amount of the non-energy conserving mitochondrial alternative oxidase (AOX). Growth at ECO increased transcript amount, and the transcript amount of a putative sugar-responsive gene encoding a chloroplast glucose-6-phosphate/phosphate translocator (GPT3). We suggest that the elevated amounts of AOX and GPT3 represent distinctive mitochondrial and chloroplast mechanisms to manage an excessive cytosolic pool of sugar phosphates. AOX respiration could consume cytosolic sugar phosphates, without this activity being restricted by rates of ATP turnover. GPT3 could allow accumulating cytosolic glucose-6-phosphate to return to the chloroplast. This could feed starch synthesis or a glucose-6-phosphate shunt in the Calvin cycle. AOX and GPT3 activities could buffer against P depletions that might otherwise disrupt mitochondrial and chloroplast electron transport chain activities. AOX and GPT3 activities could also buffer against a down-regulation of photosynthetic capacity by preventing a persistent imbalance between photosynthetic carbon gain and the activity of carbon utilizing sinks.

摘要

植物的碳平衡取决于光合作用碳增益和呼吸作用碳损失之间的差异。在 C4 植物中,大气 CO2 浓度升高(ECO)会刺激光合作用并提高叶片碳水化合物水平,但呼吸作用如何响应还不太清楚。在这项研究中,ECO 下的生长增加了非能量守恒的线粒体替代氧化酶(AOX)的蛋白含量。ECO 下的生长增加了转录量,以及编码叶绿体葡萄糖-6-磷酸/磷酸转运蛋白(GPT3)的假定糖响应基因的转录量。我们认为,AOX 和 GPT3 的增加代表了独特的线粒体和叶绿体机制,以管理过多的细胞质糖磷酸池。AOX 呼吸可以消耗细胞质糖磷酸,而不受 ATP 周转率的限制。GPT3 可以允许积累的细胞质葡萄糖-6-磷酸返回叶绿体。这可以为淀粉合成或卡尔文循环中的葡萄糖-6-磷酸分流提供养分。AOX 和 GPT3 的活性可以缓冲磷的消耗,否则这可能会破坏线粒体和叶绿体电子传递链的活性。AOX 和 GPT3 的活性还可以通过防止光合作用碳增益和碳利用汇的活性之间持续失衡来缓冲光合作用能力的下调。

相似文献

本文引用的文献

10
The evolution of the plastid phosphate translocator family.质体磷酸转运蛋白家族的进化。
Planta. 2019 Jul;250(1):245-261. doi: 10.1007/s00425-019-03161-y. Epub 2019 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验