The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom.
Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18832-18839. doi: 10.1073/pnas.2001185117. Epub 2020 Jul 24.
Plant and animal intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors detect pathogen-derived molecules and activate defense. Plant NLRs can be divided into several classes based upon their N-terminal signaling domains, including TIR (Toll-like, Interleukin-1 receptor, Resistance protein)- and CC (coiled-coil)-NLRs. Upon ligand detection, mammalian NAIP and NLRC4 NLRs oligomerize, forming an inflammasome that induces proximity of its N-terminal signaling domains. Recently, a plant CC-NLR was revealed to form an inflammasome-like hetero-oligomer. To further investigate plant NLR signaling mechanisms, we fused the N-terminal TIR domain of several plant NLRs to the N terminus of NLRC4. Inflammasome-dependent induced proximity of the TIR domain in planta initiated defense signaling. Thus, induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate authentic plant defense. Ligand detection and inflammasome formation is maintained when the known components of the NLRC4 inflammasome is transferred across kingdoms, indicating that NLRC4 complex can robustly function without any additional mammalian proteins. Additionally, we found NADase activity of a plant TIR domain is necessary for plant defense activation, but NADase activity of a mammalian or a bacterial TIR is not sufficient to activate defense in plants.
植物和动物细胞内核苷酸结合、亮氨酸丰富重复(NLR)免疫受体可检测病原体衍生的分子并激活防御。根据其 N 端信号结构域,植物 NLR 可分为几类,包括 TIR(Toll 样、白细胞介素 1 受体、抗性蛋白)和 CC(卷曲螺旋)-NLR。在配体检测后,哺乳动物 NAIP 和 NLRC4 NLR 寡聚化,形成一个炎症小体,诱导其 N 端信号结构域接近。最近,一种植物 CC-NLR 被揭示形成一种炎症小体样异源寡聚体。为了进一步研究植物 NLR 信号机制,我们将几种植物 NLR 的 N 端 TIR 结构域融合到 NLRC4 的 N 端。在植物体内,炎症小体依赖的 TIR 结构域诱导接近引发防御信号。因此,通过哺乳动物炎症小体的寡聚化诱导植物 TIR 结构域的接近足以激活真正的植物防御。当将 NLRC4 炎症小体的已知成分转移到不同的生物界时,配体检测和炎症小体的形成得以维持,这表明 NLRC4 复合物无需任何额外的哺乳动物蛋白即可稳健地发挥作用。此外,我们发现植物 TIR 结构域的 NADase 活性对于植物防御的激活是必需的,但哺乳动物或细菌 TIR 的 NADase 活性不足以在植物中激活防御。