Suppr超能文献

虾类门牙中锌取代增强生物磷灰石。

Reinforcement of bio-apatite by zinc substitution in the incisor tooth of a prawn.

机构信息

The National Institute for Biotechnology in the Negev (NIBN), Israel; The Department of Life Sciences, Ben-Gurion University, Israel.

The Department of Structural Biology, Weizmann Institute of Science, Israel.

出版信息

Acta Biomater. 2021 Jan 15;120:116-123. doi: 10.1016/j.actbio.2020.07.039. Epub 2020 Jul 22.

Abstract

Various material-strengthening strategies have evolved in the cuticle and the feeding tools of arthropods. Of particular interest is the crustacean mandible, which is frequently reinforced with calcium phosphate, giving a minerology similar to that of human bones and teeth. We report here a biological strengthening method of apatite by Zn substitution, found in the incisor teeth of the freshwater prawn Macrobrachium rosenbergii. Nanoindentation measurements show a clear positive correlation between the Zn/Ca ratio and the stiffness and hardness of the composite. In the incisor, Zn-substituted apatite forms an internal vertical axis, extending from the sharp outer edges of the tooth to its basal segment. The substitution level in this zone (up to 40%) is very high compared with the levels achieved in synthetic ceramics (<20%). Finite element simulation suggests that the high-Zn axis acts as a unique internal load transfer element, directing stress from the biting cusps to the more compliant underlying layers. In light of the considerable research being invested in developing synthetic calcium phosphate derivatives for human bone and tooth grafts, the innovative mineralogy of the M. rosenbergii incisor may inspire beneficial biomimetic applications. STATEMENT OF SIGNIFICANCE: The controlled incorporation of impurities into biominerals is a widespread phenomenon in biomineralization that may pave the way to new classes of biomimetic materials. The present study reveals a biogenic mineral of zinc-substituted apatite found in the incisor teeth of a prawn. A clear correlation between zinc substitution level and stiffness and hardness, suggests that zinc substitution serves to mechanically reinforce the bioapatite. The spatial arrangement of the high-zinc apatite unveils a material-level adaptation strategy for tooth fortification, in which the rigid high-Zn structure servs as an internal load-transfer element that transmits the stress directly from the tooth's sharp cusps to the more compliant underlying layers.

摘要

各种增强材料的策略已经在节肢动物的外骨骼和取食工具中发展起来。特别有趣的是甲壳类动物的下颚,它经常被磷酸钙强化,其矿物学与人类骨骼和牙齿相似。我们在这里报告了一种通过 Zn 取代来增强磷灰石的生物强化方法,这种方法存在于淡水虾 Macrobrachium rosenbergii 的门牙中。纳米压痕测量表明,Zn/Ca 比与复合材料的刚度和硬度之间存在明显的正相关。在门牙中,Zn 取代的磷灰石形成一个内部垂直轴,从牙齿的锋利外边缘延伸到其基段。该区域的取代水平(高达 40%)远高于合成陶瓷中达到的水平(<20%)。有限元模拟表明,高 Zn 轴作为一种独特的内部载荷传递元素,将应力从咬合的尖齿引导到更具弹性的底层。鉴于为人类骨骼和牙齿移植开发合成磷酸钙衍生物的研究投入了大量资金,M. rosenbergii 门牙的创新矿物学可能会激发有益的仿生应用。

意义陈述

杂质在生物矿化中的受控掺入是生物矿化中普遍存在的现象,它可能为新型仿生材料铺平道路。本研究揭示了一种在虾的门牙中发现的锌取代磷灰石的生物成因矿物。锌取代水平与刚度和硬度之间的明显相关性表明,锌取代有助于机械增强生物磷灰石。高锌磷灰石的空间排列揭示了一种牙齿加固的材料水平适应策略,其中刚性的高 Zn 结构作为内部载荷传递元素,将应力直接从牙齿的锋利尖齿传递到更具弹性的底层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验