Ladenstein Rudolf, Morgunova Ekaterina
Karolinska Institutet NEO, Department of Biosciences & Nutrition, Blickågången 16, 14 183 Huddinge, Sweden.
Karolinska Institutet Biomedicum, Department of Medical Biochemistry & Biophysics, Solnavägen 9, 17177 Stockholm, Sweden.
Biotechnol Rep (Amst). 2020 Jul 6;27:e00494. doi: 10.1016/j.btre.2020.e00494. eCollection 2020 Sep.
Naturally occurring and computationally designed protein cages can now be considered as extremely suitable materials for new developments in nanotechnology. Via self-assembly from single identical or non-identical protomers large oligomeric particles can be formed. Virus-like particles have today found a number of quite successful applications in the development of new vaccines. Complex chimeric nanoparticles can serve as suitable platforms for the presentation of natural or designed antigens to the immune system of the host. The scaffolds can be cage forming highly symmetric biological macromolecules like lumazine synthase or symmetric self-assembling virus-like particles generated by computational design. Symmetric nanoparticle carriers display a structurally ordered array of immunogens. This feature can lead to a more favorable interaction with B-cell receptors, in comparison to the administration of single recombinant immunogens. Several pre-clinical animal studies and clinical studies have recently pointed out the efficiency of nanoparticle antigens produced recombinantly in creating strong immune responses against infectious diseases like HIV, Malaria, Borrelia, Influenza.
天然存在的和通过计算设计的蛋白质笼现在可被视为纳米技术新发展的极其合适的材料。通过单个相同或不同的原体进行自组装,可以形成大的寡聚颗粒。如今,病毒样颗粒在新型疫苗的开发中已获得了许多相当成功的应用。复杂的嵌合纳米颗粒可作为向宿主免疫系统呈递天然或设计抗原的合适平台。支架可以是形成笼状的高度对称的生物大分子,如鲁棒嗪合酶,或通过计算设计产生的对称自组装病毒样颗粒。对称纳米颗粒载体展示出结构有序的免疫原阵列。与施用单个重组免疫原相比,这一特性可导致与B细胞受体产生更有利的相互作用。最近的一些临床前动物研究和临床研究指出,重组产生的纳米颗粒抗原在针对HIV、疟疾、疏螺旋体、流感等传染病产生强烈免疫反应方面的有效性。