Suppr超能文献

研究离子通道的当前化学生物学工具包。

The current chemical biology tool box for studying ion channels.

机构信息

Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Copenhagen, 2100, Denmark.

出版信息

J Physiol. 2020 Oct;598(20):4455-4471. doi: 10.1113/JP276695. Epub 2020 Aug 17.

Abstract

Ion channels play important roles in human physiology and their dysfunction is linked to a variety of diseases. This has sparked considerable interest in their molecular function and pharmacology and generated a need to manipulate them with great precision. The use of high-sensitivity electrophysiological methods allows for the implementation of chemical biology manipulations, as even minute protein amounts can be studied. For example, modification of solvent-accessible cysteines is a powerful tool to site-selectively modify proteins through the introduction of charged moieties or those with fluorescent properties. This has been harnessed to study ion conduction pathways and monitor conformational dynamics. In ligand-directed chemistry, a high-affinity ligand is used to modify an ion channel with a chemical probe via a reactive linker. While these approaches are typically limited to extracellular positions, genetic code expansion provides a means to introduce non-canonical amino acids in any position of the protein. This enables the insertion of subtle analogues of naturally occurring side chains or the protein backbone, as well as amino acids with fluorescent, cross-linking or photo-switchable properties. Finally, protein semi-synthesis enables the simultaneous insertion of multiple modifications, including those that would not be tolerated by the ribosomal translation machinery. Collectively, these chemical biology tools have overcome various shortcomings of conventional mutagenesis and vastly expanded the scope of possible modifications and the type of ion channels they can be applied to. Their application in both heterologous and native cell systems will no doubt play an increasingly important role in ion channel research.

摘要

离子通道在人类生理学中发挥着重要作用,它们的功能障碍与多种疾病有关。这引发了人们对其分子功能和药理学的极大兴趣,并产生了以极高精度对其进行操作的需求。高灵敏度电生理学方法的使用允许进行化学生物学操作,因为即使是微量的蛋白质也可以进行研究。例如,修饰可及溶剂的半胱氨酸是通过引入带电部分或具有荧光性质的部分来选择性修饰蛋白质的有力工具。这已被用于研究离子传导途径和监测构象动力学。在配体导向化学中,高亲和力配体通过反应性接头将化学探针用于修饰离子通道。虽然这些方法通常仅限于细胞外位置,但遗传密码扩展提供了一种在蛋白质的任何位置引入非典型氨基酸的方法。这使得可以插入天然侧链或蛋白质骨架的微妙类似物,以及具有荧光、交联或光开关性质的氨基酸。最后,蛋白质半合成使多个修饰的同时插入成为可能,包括核糖体翻译机制无法耐受的修饰。这些化学生物学工具共同克服了传统诱变的各种缺点,并极大地扩展了可能的修饰类型和可应用于的离子通道类型。它们在异源和天然细胞系统中的应用无疑将在离子通道研究中发挥越来越重要的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验