Suppr超能文献

血流阻断对最大努力小肌肉群运动中肌肉募集和疲劳的影响。

Influence of blood flow occlusion on muscular recruitment and fatigue during maximal-effort small muscle-mass exercise.

机构信息

Department of Kinesiology, Kansas State University, Manhattan, KS, USA.

出版信息

J Physiol. 2020 Oct;598(19):4293-4306. doi: 10.1113/JP279925. Epub 2020 Aug 13.

Abstract

KEY POINTS

The heavy-to-severe intensity exercise threshold (i.e. critical force) distinguishes between steady-state and progressive metabolic and neuromuscular responses to exercise. High levels of skeletal muscle sensory feedback related to peripheral fatigue development are thought to restrict motor unit activation and limit exercise tolerance. Utilizing limb blood flow occlusion, we demonstrate that critical force reflects an oxygen-delivery-dependent balance between motor unit activation and peripheral fatigue development. Our findings suggest that mechanisms which determine the total force-producing capacity of exercising skeletal muscle are significantly altered during blood flow occlusion. These findings may have widespread implications for exercise tolerance in patient populations who experience partial vascular occlusion or altered neuromuscular reflexes.

ABSTRACT

High levels of muscle sensory feedback restrict motor unit activation and limit exercise tolerance. The roles of muscle fatigue development and motor unit activation in determining the heavy- to severe-intensity threshold (critical force; CF) remain unclear. This study utilized blood flow occlusion (OCC) to determine relationships between muscle fatigue development and motor unit activation during the determination of CF. We hypothesized that (1) OCC would exacerbate peripheral fatigue development and increase the rate of motor unit deactivation, and (2) blood flow reperfusion (REP) would result in muscle recovery and re-recruitment of motor units despite continuous maximal effort, (3) resulting in an end-exercise force not different from CF. Seven young, healthy subjects performed maximal-effort rhythmic handgrip exercise for 5 min under control conditions (CON) and during OCC and REP. Peripheral fatigue development and motor unit activation were measured via electrical stimulation and electromyography, respectively, during each test. OCC resulted in significantly greater peripheral fatigue development than CON (54.3 ± 34.8%; P < 0.001). Motor unit deactivation was only observed during OCC (P < 0.001). REP resulted in significant peripheral recovery (P < 0.001) and the re-recruitment of motor units (P < 0.001) to levels not different from CON. While OCC resulted in a significantly greater reduction in force production compared to CON (65.7 ± 35.6%; P < 0.001), REP resulted in the restoration of maximal-effort force production (266 ± 19 N; P < 0.001) to levels not different from CF (276 ± 55 N). These data suggest that CF reflects an oxygen-delivery-dependent balance between motor unit activation and peripheral fatigue development. Furthermore, this study established that mechanisms which determine the total force-producing capacity of exercising skeletal muscle are altered during OCC.

摘要

要点

剧烈运动强度阈值(即临界力)区分了运动至稳定状态和渐进代谢及神经肌肉反应。与外周疲劳发展相关的高水平骨骼肌感觉反馈被认为会限制运动单位的激活并限制运动耐量。我们利用肢体血流闭塞,证明临界力反映了运动单位激活和外周疲劳发展之间的氧输送依赖性平衡。我们的发现表明,在血流闭塞期间,决定运动骨骼肌总产力能力的机制发生了显著改变。这些发现可能对经历部分血管闭塞或神经肌肉反射改变的患者群体的运动耐量产生广泛影响。

摘要

高水平的肌肉感觉反馈会限制运动单位的激活并限制运动耐量。肌肉疲劳发展和运动单位激活在确定重至剧烈强度阈值(临界力;CF)中的作用仍不清楚。本研究利用血流闭塞(OCC)来确定在确定 CF 期间肌肉疲劳发展和运动单位激活之间的关系。我们假设:(1)OCC 会加剧外周疲劳发展并增加运动单位失活的速度,以及(2)血流再灌注(REP)会导致肌肉恢复和运动单位的重新募集,尽管持续最大努力,(3)导致的终末运动力与 CF 无差异。7 名年轻健康的受试者在对照条件(CON)和 OCC 和 REP 期间进行了 5 分钟的最大努力节律性握力运动。在每次测试中,通过电刺激和肌电图分别测量外周疲劳发展和运动单位激活。OCC 导致的外周疲劳发展明显大于 CON(54.3±34.8%;P<0.001)。仅在 OCC 期间观察到运动单位失活(P<0.001)。REP 导致外周显著恢复(P<0.001)和运动单位的重新募集(P<0.001),达到与 CON 无差异的水平。虽然 OCC 导致与 CON 相比,力产生的显著降低(65.7±35.6%;P<0.001),但 REP 导致最大努力力产生的恢复(266±19 N;P<0.001)达到与 CF 无差异的水平(276±55 N)。这些数据表明,CF 反映了运动单位激活和外周疲劳发展之间的氧输送依赖性平衡。此外,本研究表明,在 OCC 期间,决定运动骨骼肌总产力能力的机制发生了改变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验