Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.
Exp Physiol. 2024 May;109(5):738-753. doi: 10.1113/EP091753. Epub 2024 Apr 1.
At a given exercise intensity, blood flow restriction (BFR) reduces the volume of exercise required to impair post-exercise neuromuscular function. Compared to traditional exercise, the time course of recovery is less clear. After strenuous exercise, force output assessed with electrical muscle stimulation is impaired to a greater extent at low versus high stimulation frequencies, a condition known as prolonged low-frequency force depression (PLFFD). It is unclear if BFR increases PLFFD after exercise. This study tested if BFR during exercise increases PLFFD and slows recovery of neuromuscular function compared to regular exercise. Fifteen physically active participants performed six low-load sets of knee-extensions across four conditions: resistance exercise to task failure (RE), resistance exercise to task failure with BFR applied continuously (BFR) or intermittently (BFR), and resistance exercise matched to the lowest exercise volume condition (RE). Maximal voluntary contraction (MVC) force output, voluntary activation and a force-frequency (1-100 Hz) curve were measured before and 0, 1, 2, 3, 4 and 24 h after exercise. Exercise to task failure caused similar reductions at 0 h for voluntary activation (RE= 81.0 ± 14.2%, BFR= 80.9 ± 12.4% and BFR= 78.6 ± 10.7%) and MVC force output (RE= 482 ± 168 N, BFR= 432 ± 174 N, and BFR= 443 ± 196 N), which recovered to baseline values between 4 and 24 h. PLFFD occurred only after RE at 1 h supported by a higher frequency to evoke 50% of the force production at 100 Hz (1 h: 17.5 ± 4.4 vs. baseline: 15 ± 4.1 Hz, P = 0.0023), BFR (15.5 ± 4.0 Hz; P = 0.03), and RE (14.9 ± 3.1 Hz; P = 0.002), with a trend versus BFR (15.7 ± 3.5 Hz; P = 0.063). These findings indicate that, in physically active individuals, using BFR during exercise does not impair the recovery of neuromuscular function by 24 h post-exercise.
在给定的运动强度下,血流限制(BFR)减少了损害运动后神经肌肉功能所需的运动量。与传统运动相比,恢复的时间过程不太清楚。剧烈运动后,用肌肉电刺激评估的力输出在低刺激频率下比高刺激频率下受到更大的损害,这种情况称为低频力抑制延长(PLFFD)。目前尚不清楚 BFR 是否会增加运动后的 PLFFD。本研究旨在测试运动期间 BFR 是否会增加 PLFFD 并减缓神经肌肉功能的恢复,与常规运动相比。15 名身体活跃的参与者进行了六组低负荷的膝关节伸展运动,共进行了四种条件:阻力运动至疲劳(RE)、持续(BFR)或间歇性(BFR)施加血流限制的阻力运动,以及与最低运动量条件相匹配的阻力运动(RE)。在运动前和运动后 0、1、2、3、4 和 24 小时测量最大自主收缩(MVC)力输出、自愿激活和力频率(1-100 Hz)曲线。运动至疲劳在 0 小时时对自愿激活(RE=81.0±14.2%,BFR=80.9±12.4%和 BFR=78.6±10.7%)和 MVC 力输出(RE=482±168 N,BFR=432±174 N,BFR=443±196 N)有类似的降低,在 4 至 24 小时之间恢复到基线值。仅在 RE 后 1 小时出现 PLFFD,此时需要更高的频率来诱发 100 Hz 时 50%的力输出(1 小时:17.5±4.4 与基线:15±4.1 Hz,P=0.0023),BFR(15.5±4.0 Hz;P=0.03)和 RE(14.9±3.1 Hz;P=0.002),与 BFR 呈趋势(15.7±3.5 Hz;P=0.063)。这些发现表明,在身体活跃的个体中,运动期间使用 BFR 不会在运动后 24 小时内损害神经肌肉功能的恢复。