Suppr超能文献

基于人群的癌症生存分析中治愈部分的半参数估计。

Semiparametric estimation of the cure fraction in population-based cancer survival analysis.

机构信息

Department of Statistics, University of South Carolina, Columbia, South Carolina, USA.

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA.

出版信息

Stat Med. 2020 Nov 20;39(26):3787-3805. doi: 10.1002/sim.8693. Epub 2020 Jul 28.

Abstract

With rapid development in medical research, the treatment of diseases including cancer has progressed dramatically and those survivors may die from causes other than the one under study, especially among elderly patients. Motivated by the Surveillance, Epidemiology, and End Results (SEER) female breast cancer study, background mortality is incorporated into the mixture cure proportional hazards (MCPH) model to improve the cure fraction estimation in population-based cancer studies. Here, that patients are "cured" is defined as when the mortality rate of the individuals in diseased group returns to the same level as that expected in the general population, where the population level mortality is presented by the mortality table of the United States. The semiparametric estimation method based on the EM algorithm for the MCPH model with background mortality (MCPH+BM) is further developed and validated via comprehensive simulation studies. Real data analysis shows that the proposed semiparametric MCPH+BM model may provide more accurate estimation in population-level cancer study.

摘要

随着医学研究的快速发展,包括癌症在内的疾病的治疗取得了显著进展,那些幸存者可能会死于研究中未涉及的其他原因,尤其是在老年患者中。受监测、流行病学和最终结果(SEER)女性乳腺癌研究的启发,背景死亡率被纳入混合治愈比例风险(MCPH)模型中,以提高基于人群的癌症研究中治愈分数的估计。这里,当患病组中个体的死亡率恢复到与一般人群相同的水平时,患者被“治愈”,其中人群水平的死亡率由美国死亡率表表示。通过综合模拟研究,进一步开发和验证了用于具有背景死亡率的 MCPH 模型(MCPH+BM)的基于 EM 算法的半参数估计方法。真实数据分析表明,所提出的半参数 MCPH+BM 模型在人群癌症研究中可能提供更准确的估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验