Zhang Jiajia, Peng Yingwei
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7.
Stat Med. 2007 Jul 20;26(16):3157-71. doi: 10.1002/sim.2748.
The proportional hazard (PH) mixture cure model and the accelerated failure time (AFT) mixture cure model are usually used in analysing failure time data with long-term survivors. However, the semiparametric AFT mixture cure model has attracted less attention than the semiparametric PH mixture cure model because of the complexity of its estimation method. In this paper, we propose a new estimation method for the semiparametric AFT mixture cure model. This method employs the EM algorithm and the rank estimator of the AFT model to estimate the parameters of interest. The M-step in the EM algorithm, which incorporates the rank-like estimating equation, can be carried out easily using the linear programming method. To evaluate the performance of the proposed method, we conduct a simulation study. The results of the simulation study demonstrate that the proposed method performs better than the existing estimation method and the semiparametric AFT mixture cure model improves the identifiability of the parameters in comparison to the parametric AFT mixture cure model. To illustrate, we apply the model and the proposed method to a data set of failure times from bone marrow transplant patients.
比例风险(PH)混合治愈模型和加速失效时间(AFT)混合治愈模型通常用于分析具有长期存活者的失效时间数据。然而,由于其估计方法的复杂性,半参数AFT混合治愈模型比半参数PH混合治愈模型受到的关注较少。在本文中,我们提出了一种用于半参数AFT混合治愈模型的新估计方法。该方法采用EM算法和AFT模型的秩估计器来估计感兴趣的参数。EM算法中的M步结合了类似秩的估计方程,可以使用线性规划方法轻松实现。为了评估所提出方法的性能,我们进行了一项模拟研究。模拟研究结果表明,所提出的方法比现有估计方法表现更好,并且与参数AFT混合治愈模型相比,半参数AFT混合治愈模型提高了参数的可识别性。为了说明这一点,我们将该模型和所提出的方法应用于骨髓移植患者的失效时间数据集。