Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwnagjin-gu, Seoul 05006, Republic of Korea.
Sci Total Environ. 2020 Nov 25;745:140789. doi: 10.1016/j.scitotenv.2020.140789. Epub 2020 Jul 12.
The objective of this study was to investigate the adsorption of diclofenac (DF) and cephalexin (CPX) by Anthriscus sylvestris-derived activated biochar. The raw biochar (R-BC) and activated biochar (ACT-B) were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and elemental analyses techniques to obtain information regarding the morphology, functional groups and elements of the adsorbents. Batch studies were carried out to examine the effect of various operational parameters. The maximum adsorption capacity of ACT-B was 392.94 mg g for DF and 724.54 mg g for CPX. The removal of DF and CPX was influenced by temperature and the co-existing ions. The kinetic data fitted well with the pseudo-second-order kinetic model, whereas the isotherm data showed the best correlation with Langmuir isotherm model. Electrostatic adsorption, hydrophobic interaction and π-π bonding play a key role in adsorption of both adsorbates by ACT-B. Additionally, column studies were conducted using ACT-B at different flow rates and different concentrations of DF and CPX to investigate the practical applicability of ACT-B in removal of the target contaminants. Thus, this study provides a feasible approach to synthesize activated biochar that can minimize pharmaceuticals pollution in water bodies.
本研究旨在探讨西洋山芹菜衍生的活化生物炭对双氯芬酸(DF)和头孢氨苄(CPX)的吸附作用。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱和元素分析技术对原始生物炭(R-BC)和活化生物炭(ACT-B)进行了表征,以获取有关吸附剂形貌、官能团和元素的信息。进行了批处理研究,以考察各种操作参数的影响。ACT-B 对 DF 和 CPX 的最大吸附容量分别为 392.94 mg/g 和 724.54 mg/g。DF 和 CPX 的去除受温度和共存离子的影响。动力学数据与准二级动力学模型拟合良好,而等温线数据与 Langmuir 等温线模型的相关性最好。静电吸附、疏水相互作用和π-π键合在 ACT-B 对两种吸附物的吸附中起关键作用。此外,还使用 ACT-B 在不同流速和不同浓度的 DF 和 CPX 下进行了柱研究,以考察 ACT-B 在去除目标污染物方面的实际应用。因此,本研究提供了一种可行的方法来合成可最大程度减少水体中药物污染的活化生物炭。