The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
mBio. 2020 Jul 28;11(4):e01619-20. doi: 10.1128/mBio.01619-20.
Bacterial lipoproteins (Lpps) are a class of membrane-associated proteins universally distributed among all bacteria. A characteristic N-terminal cysteine residue that is variably acylated anchors C-terminal globular domains to the extracellular surface, where they serve numerous roles, including in the capture and transport of essential nutrients. Lpps are also ligands for the Toll-like receptor 2 (TLR2) family, a key component of the innate immune system tasked with bacterial recognition. While Lpp function is conserved in all prokaryotes, structural heterogeneity in the N-terminal acylation state is widespread among and can differ between otherwise closely related species. In this study, we identify a novel two-gene system that directs the synthesis of -acylated Lpps in the commensal and opportunistic pathogen subset of staphylococci. The two genes, which we have named the ipoprotein -acylation transferase ystem (Lns), bear no resemblance to previously characterized N-terminal Lpp tailoring enzymes. LnsA (SAOUHSC_00822) is an NlpC/P60 superfamily enzyme, whereas LnsB (SAOHSC_02761) has remote homology to the CAAX protease and bacteriocin-processing enzyme (CPBP) family. Both LnsA and LnsB are together necessary and alone sufficient for -acylation in and convert the Lpp chemotype from diacyl to triacyl when heterologously expressed in Acquisition of decreases TLR2-mediated detection of by nearly 10-fold and shifts the activated TLR2 complex from TLR2/6 to TLR2/1. LnsAB thus has a dual role in attenuating TLR2 signaling in addition to a broader role in bacterial cell envelope physiology. Although it has long been known that forms triacylated Lpps, a lack of homologs to known -acylation genes found in Gram-negative bacteria has until now precluded identification of the genes responsible for this Lpp modification. Here, we demonstrate N-terminal Lpp acylation and chemotype conversion to the tri-acylated state is directed by a unique acyl transferase system encoded by two noncontiguous staphylococci genes (). Since triacylated Lpps stimulate TLR2 more weakly than their diacylated counterparts, Lpp -acylation is an important TLR2 immunoevasion factor for determining tolerance or nontolerance in niches such as in the skin microbiota. The discovery of the LnsAB system expands the known diversity of Lpp biosynthesis pathways and acyl transfer biochemistry in bacteria, advances our understanding of Lpp structural heterogeneity, and helps differentiate commensal and noncommensal microbiota.
细菌脂蛋白 (Lpp) 是一类普遍存在于所有细菌中的膜相关蛋白。其 N 端的一个特征性半胱氨酸残基可发生可变酰化,将 C 端的球状结构域锚定到细胞外表面,在那里它们发挥多种作用,包括捕获和运输必需的营养物质。Lpp 也是 Toll 样受体 2 (TLR2) 家族的配体,TLR2 家族是先天免疫系统的关键组成部分,负责细菌识别。虽然 Lpp 的功能在所有原核生物中都是保守的,但 N 端酰化状态的结构异质性在 和其他密切相关的物种之间广泛存在。在这项研究中,我们鉴定了一个新的双基因系统,该系统指导共生和机会性病原体组葡萄球菌中 -酰化 Lpp 的合成。这两个基因,我们将其命名为脂蛋白酰基转移酶系统 (Lns),与先前表征的 N 端 Lpp 修剪酶没有相似之处。LnsA (SAOUHSC_00822) 是一种 NlpC/P60 超家族酶,而 LnsB (SAOHSC_02761) 与 CAAX 蛋白酶和细菌素加工酶 (CPBP) 家族具有远程同源性。LnsA 和 LnsB 一起是 的必要条件,单独使用即可在 中实现 -酰化,并且当在 中异源表达时,将 Lpp 化学型从二酰基转化为三酰基。 获得后,TLR2 对 的检测降低了近 10 倍,并将激活的 TLR2 复合物从 TLR2/6 转变为 TLR2/1。因此,LnsAB 在减弱 TLR2 信号传导方面具有双重作用,除了在细菌细胞包膜生理学中具有更广泛的作用外。尽管人们早就知道 形成三酰化 Lpp,但由于革兰氏阴性菌中未发现与已知 -酰化基因同源的基因,因此直到现在才确定负责这种 Lpp 修饰的基因。在这里,我们证明了 N 端 Lpp 的酰化和化学型转换为三酰化状态是由两个非连续的葡萄球菌基因 (SAOUHSC_00822 和 SAOHSC_02761) 编码的独特酰基转移酶系统指导的。由于三酰化 Lpp 比其二酰化对应物刺激 TLR2 的能力弱,因此 Lpp 的酰化是决定皮肤微生物群等生态位中耐受性或非耐受性的 TLR2 免疫逃避因素。LnsAB 系统的发现扩展了细菌中已知的 Lpp 生物合成途径和酰基转移生物化学的多样性,增进了我们对 Lpp 结构异质性的理解,并有助于区分共生和非共生微生物群。