Suppr超能文献

检测欧洲年最大流量中的丰水期和枯水期。

Detecting Flood-Rich and Flood-Poor Periods in Annual Peak Discharges Across Europe.

作者信息

Lun David, Fischer Svenja, Viglione Alberto, Blöschl Günter

机构信息

Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology Vienna Austria.

Institute of Hydrology, Water Resources Management and Environmental Engineering Ruhr-University Bochum Bochum Germany.

出版信息

Water Resour Res. 2020 Jul;56(7):e2019WR026575. doi: 10.1029/2019WR026575. Epub 2020 Jul 9.

Abstract

This paper proposes a method from Scan statistics for identifying flood-rich and flood-poor periods (i.e., anomalies) in flood discharge records. Exceedances of quantiles with 2-, 5-, and 10-year return periods are used to identify periods with unusually many (or few) threshold exceedances with respect to the reference condition of independent and identically distributed random variables. For the case of flood-rich periods, multiple window lengths are used in the identification process. The method is applied to 2,201 annual flood peak series in Europe between 1960 and 2010. Results indicate evidence for the existence of flood-rich and flood-poor periods, as about 2 to 3 times more anomalies are detected than what would be expected by chance. The frequency of the anomalies tends to decrease with an increasing threshold return period which is consistent with previous studies, but this may be partly related to the method and the record length of about 50 years. In the northwest of Europe, the frequency of stations with flood-rich periods tends to increase over time and the frequency of stations with flood-poor periods tends to decrease. In the east and south of Europe, the opposite is the case. There appears to exist a turning point around 1970 when the frequencies of anomalies start to change most clearly. This turning point occurs at the same time as a turning point of the North Atlantic Oscillation index. The method is also suitable for peak-over-threshold series and can be generalized to higher dimensions, such as space and space-time.

摘要

本文提出了一种基于扫描统计量的方法,用于识别洪水流量记录中的洪水多发期和洪水少发期(即异常情况)。使用重现期为2年、5年和10年的分位数超过情况,来识别相对于独立同分布随机变量的参考条件而言,阈值超过情况异常多(或异常少)的时期。对于洪水多发期的情况,在识别过程中使用了多个窗口长度。该方法应用于1960年至2010年欧洲的2201个年洪水峰值序列。结果表明存在洪水多发期和洪水少发期的证据,因为检测到的异常情况比偶然预期的多约2至3倍。异常情况的频率往往随着阈值重现期的增加而降低,这与先前的研究一致,但这可能部分与方法和大约50年的记录长度有关。在欧洲西北部,洪水多发期站点的频率随时间趋于增加,而洪水少发期站点的频率趋于降低。在欧洲东部和南部,情况则相反。在1970年左右似乎存在一个转折点,此时异常情况的频率开始最明显地变化。这个转折点与北大西洋涛动指数的转折点同时出现。该方法也适用于阈值以上峰值序列,并且可以推广到更高维度,如空间和时空。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5684/7380311/138c12c209d0/WRCR-56-e2019WR026575-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验