Dashtian Kheibar, Hajati Shaaker, Ghaedi Mehrorang
Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran.
Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran.
Biosens Bioelectron. 2020 Oct 1;165:112346. doi: 10.1016/j.bios.2020.112346. Epub 2020 Jun 5.
A simple and highly sensitive photoelectrochemical biosensor towards L-phenylalanine, as a kind of typical essential amino acid and phenylketonuria biomarker was developed on a surface molecular imprinted (MIP) polydopamine-coated CdS/CdSe/Zn heterojunction. Hierarchical marigold flower-like Zn layer decorated by n-type dichalcogenides interfacial heterojunction was successfully designed and synthesized on Ti foil for PEC converter by in situ electrodeposition. A visible-light-driven molecular imprinting film was prepared through the electropolymerization of dopamine in the presence of L-Phe as biomarker. The combination of bio-MIP and photoelectrochemistry overcomes the defects of the PEC method, which is the absence of selectivity, and offers a new PEC sensor with high sensitivity and selectivity based on visible-light-driven heterojunction and biopolymer-enhanced strategy. The unique interfacial between the Zn marigold flower layer as low work function support and CdS/CdSe n-n heterojunction as well as n-type characteristics of polydopamine imprinted by L-Phe biomarker drastically increase the light trapping and absorption in the visible range, and dramatically inhibit the charge carrier recombination, which is crucial for boosting the Bio-PEC activity. Photocatalytic, electrocatalytic and physicochemical properties of the above-mentioned layers were fully characterized. As-prepared PEC biosensor displayed superb performance for the detection of L-Phe biomarker in the optimized condition obtained from central composite design modeling, showing two linear range 0.005-2.5 and 2.5-130 μM and a low detection limit of 0.9 nM. This work suggests that such L-Phe-imprinted polydopamine-coated Zn/CdS/CdSe heterojunction is greatly promising for being applied in photoelectrochemical biosensing with high photo-electron conversion efficiency.
一种针对L-苯丙氨酸的简单且高灵敏度的光电化学生物传感器被开发出来,L-苯丙氨酸是一种典型的必需氨基酸和苯丙酮尿症生物标志物,该传感器基于表面分子印迹(MIP)聚多巴胺包覆的CdS/CdSe/Zn异质结。通过原位电沉积成功地在钛箔上设计并合成了由n型二硫属化物界面异质结修饰的分层金盏花状锌层作为光电化学转换器。在作为生物标志物的L-苯丙氨酸存在下,通过多巴胺的电聚合制备了可见光驱动的分子印迹膜。生物分子印迹聚合物(bio-MIP)与光电化学的结合克服了光电化学方法缺乏选择性的缺陷,并基于可见光驱动的异质结和生物聚合物增强策略提供了一种具有高灵敏度和选择性的新型光电化学生物传感器。作为低功函数载体的锌金盏花层与CdS/CdSe n-n异质结之间独特的界面,以及由L-苯丙氨酸生物标志物印迹的聚多巴胺的n型特性,极大地增加了可见光范围内的光捕获和吸收,并显著抑制了电荷载流子复合,这对于提高生物光电化学活性至关重要。对上述各层的光催化、电催化和物理化学性质进行了充分表征。所制备的光电化学生物传感器在通过中心复合设计建模获得的优化条件下,对L-苯丙氨酸生物标志物的检测表现出卓越的性能,显示出两个线性范围0.005 - 2.5和2.5 - 130 μM,检测限低至0.9 nM。这项工作表明,这种L-苯丙氨酸印迹的聚多巴胺包覆的Zn/CdS/CdSe异质结在具有高光电转换效率的光电化学生物传感应用中极具前景。