School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
Sensors (Basel). 2020 Jul 28;20(15):4178. doi: 10.3390/s20154178.
The recognition of non-line-of-sight (NLOS) state is a prerequisite for alleviating NLOS errors and is crucial to ensure the accuracy of positioning. Recent studies only identify the line-of-sight (LOS) state and the NLOS state, but ignore the contribution of occlusion categories to spatial information perception. This paper proposes a bidirectional search algorithm based on maximum correlation, minimum redundancy, and minimum computational cost (BS-mRMRMC). The optimal channel impulse response (CIR) feature set, which can identify NLOS and LOS states well, as well as the blocking categories, are determined by setting the constraint thresholds of both the maximum evaluation index, and the computational cost. The identification of blocking categories provides more effective information for the indoor space perception of ultra-wide band (UWB). Based on the vector projection method, the hierarchical structure of decision tree support vector machine (DT-SVM) is designed to verify the recognition accuracy of each category. Experiments show that the proposed algorithm has an average recognition accuracy of 96.7% for each occlusion category, which is better than those of the other three algorithms based on the same number of CIR signal characteristics of UWB.
非视距 (NLOS) 状态的识别是减轻 NLOS 误差的前提,对于确保定位精度至关重要。最近的研究仅识别视距 (LOS) 状态和 NLOS 状态,但忽略了遮挡类别对空间信息感知的贡献。本文提出了一种基于最大相关、最小冗余和最小计算成本 (BS-mRMRMC) 的双向搜索算法。通过设置最大评估指标和计算成本的约束阈值,确定了能够很好地识别 NLOS 和 LOS 状态以及遮挡类别的最优信道脉冲响应 (CIR) 特征集。遮挡类别的识别为超宽带 (UWB) 的室内空间感知提供了更有效的信息。基于向量投影方法,设计了决策树支持向量机 (DT-SVM) 的层次结构,以验证每个类别的识别准确性。实验表明,对于每个遮挡类别,所提出的算法的平均识别准确率为 96.7%,优于其他三种基于相同数量 UWB CIR 信号特征的算法。