Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA.
Int J Mol Sci. 2020 Jul 28;21(15):5350. doi: 10.3390/ijms21155350.
Mitogen-activated protein kinases (MAPKs) are key regulators of numerous biological processes in plants. To better understand the mechanisms by which these kinases function, high resolution measurement of MAPK activation kinetics in different biological contexts would be beneficial. One method to measure MAPK activation in plants is via fluorescence-based genetically-encoded biosensors, which can provide real-time readouts of the temporal and spatial dynamics of kinase activation in living tissue. Although fluorescent biosensors have been widely used to study MAPK dynamics in animal cells, there is currently only one MAPK biosensor that has been described for use in plants. To facilitate creation of additional plant-specific MAPK fluorescent biosensors, we report the development of two new tools: an in vitro assay for efficiently characterizing MAPK docking domains and a translocation-based kinase biosensor for use in plants. The implementation of these two methods has allowed us to expand the available pool of plant MAPK biosensors, while also providing a means to generate more specific and selective MAPK biosensors in the future. Biosensors developed using these methods have the potential to enhance our understanding of the roles MAPKs play in diverse plant signaling networks affecting growth, development, and stress response.
丝裂原活化蛋白激酶(MAPKs)是植物中许多生物过程的关键调节剂。为了更好地理解这些激酶的作用机制,在不同的生物背景下对 MAPK 激活动力学进行高分辨率测量将是有益的。一种测量植物中 MAPK 激活的方法是通过基于荧光的遗传编码生物传感器,它可以提供活组织中激酶激活的时间和空间动态的实时读数。尽管荧光生物传感器已被广泛用于研究动物细胞中的 MAPK 动力学,但目前只有一种 MAPK 生物传感器被描述用于植物。为了方便创建其他植物特异性 MAPK 荧光生物传感器,我们报告了两种新工具的开发:一种用于有效表征 MAPK 对接结构域的体外测定法和一种用于植物的基于易位的激酶生物传感器。这两种方法的实施使我们能够扩展可用的植物 MAPK 生物传感器库,同时也为未来生成更具特异性和选择性的 MAPK 生物传感器提供了一种手段。使用这些方法开发的生物传感器有可能增强我们对 MAPK 在影响生长、发育和应激反应的各种植物信号网络中所起作用的理解。