Galparsoro Oihana, Kaufmann Sven, Auerbach Daniel J, Kandratsenka Alexander, Wodtke Alec M
Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Phys Chem Chem Phys. 2020 Aug 21;22(31):17532-17539. doi: 10.1039/d0cp02858d. Epub 2020 Jul 31.
We present first principles calculations of the reactive flux for thermal recombinative desorption of hydrogen from Cu(111). We follow a theoretical paradigm used successfully for gas phase reactions, where electronic structure theory (DFT-GGA) is combined with transition state theory (TST). Classical ab initio molecular dynamics trajectories initiated from a thermal distribution near the transition state provide dynamical corrections to the desorption rate. We use this to calculate and study the recrossing error of TST and to directly simulate thermal desorption experiments based on a high temperature permeation method. Transition state recrossing is strongly temperature dependent and is even important in a frozen Cu-atom model. It is not influenced by inclusion of electron-hole pair excitation at the level of the local density electronic friction approximation. We also present the kinetic energy resolved flux of desorbing H at elevated temperature. This provides a more direct way to compare first principles theory to experiment, with no need to invoke detailed balance.
我们给出了氢从Cu(111)表面进行热复合脱附反应通量的第一性原理计算。我们遵循一种在气相反应中成功应用的理论范式,即将电子结构理论(DFT - GGA)与过渡态理论(TST)相结合。从过渡态附近的热分布出发的经典从头算分子动力学轨迹为脱附速率提供了动力学修正。我们用此来计算和研究TST的再穿越误差,并基于高温渗透法直接模拟热脱附实验。过渡态再穿越强烈依赖于温度,甚至在冻结的铜原子模型中也很重要。在局部密度电子摩擦近似水平上,它不受电子 - 空穴对激发的影响。我们还给出了高温下脱附氢的动能分辨通量。这提供了一种将第一性原理理论与实验进行比较的更直接方法,无需援引细致平衡。