Smeets Egidius W F, Kroes Geert-Jan
Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
J Phys Chem C Nanomater Interfaces. 2021 May 6;125(17):8993-9010. doi: 10.1021/acs.jpcc.0c11034. Epub 2021 Apr 21.
Accurately modeling heterogeneous catalysis requires accurate descriptions of rate-controlling elementary reactions of molecules on metal surfaces, but standard density functionals (DFs) are not accurate enough for this. The problem can be solved with the specific reaction parameter approach to density functional theory (SRP-DFT), but the transferability of SRP DFs among chemically related systems is limited. We combine the MS-PBEl, MS-B86bl, and MS-RPBEl semilocal made simple (MS) meta-generalized gradient approximation (GGA) (mGGA) DFs with rVV10 nonlocal correlation, and we evaluate their performance for the hydrogen (H) + Cu(111), deuterium (D) + Ag(111), H + Au(111), and D + Pt(111) gas-surface systems. The three MS mGGA DFs that have been combined with rVV10 nonlocal correlation were not fitted to reproduce particular experiments, nor has the parameter present in rVV10 been reoptimized. Of the three DFs obtained the MS-PBEl-rVV10 DF yields an excellent description of van der Waals well geometries. The three original MS mGGA DFs gave a highly accurate description of the metals, which was comparable in quality to that obtained with the PBEsol DF. Here, we find that combining the three original MS mGGA DFs with rVV10 nonlocal correlation comes at the cost of a slightly less accurate description of the metal. However, the description of the metal obtained in this way is still better than the descriptions obtained with SRP DFs specifically optimized for individual systems. Using the Born-Oppenheimer static surface (BOSS) model, simulations of molecular beam dissociative chemisorption experiments yield chemical accuracy for the D + Ag(111) and D + Pt(111) systems. A comparison between calculated and measured (ν, ) parameters describing associative desorption suggests chemical accuracy for the associative desorption of H from Au(111) as well. Our results suggest that ascending Jacob's ladder to the mGGA rung yields increasingly more accurate results for gas-surface reactions of H (D) interacting with late transition metals.
准确地对多相催化进行建模需要精确描述分子在金属表面上的速率控制基元反应,但标准密度泛函(DFs)在这方面不够精确。这个问题可以通过密度泛函理论的特定反应参数方法(SRP-DFT)来解决,但SRP DFs在化学相关体系之间的可转移性是有限的。我们将MS-PBEl、MS-B86bl和MS-RPBEl半局域简化(MS)元广义梯度近似(GGA)(mGGA)密度泛函与rVV10非局域关联相结合,并评估它们在氢(H)+Cu(111)、氘(D)+Ag(111)、H+Au(111)和D+Pt(111)气-固表面体系中的性能。这三个与rVV10非局域关联相结合的MS mGGA密度泛函并非为重现特定实验而拟合,rVV10中存在的参数也未重新优化。在得到的三个密度泛函中,MS-PBEl-rVV10密度泛函对范德华阱几何结构给出了出色的描述。这三个原始的MS mGGA密度泛函对金属给出了高度精确的描述,其质量与用PBEsol密度泛函得到的相当。在这里,我们发现将这三个原始的MS mGGA密度泛函与rVV10非局域关联相结合,代价是对金属的描述略欠精确。然而,以这种方式得到的对金属的描述仍优于为单个体系专门优化的SRP DFs所得到的描述。使用玻恩-奥本海默静态表面(BOSS)模型,对分子束解离化学吸附实验的模拟对D+Ag(111)和D+Pt(111)体系给出了化学精度。对描述缔合脱附的计算和测量的(ν,)参数的比较表明,H从Au(111)的缔合脱附也具有化学精度。我们的结果表明,对于H(D)与晚期过渡金属相互作用的气-固表面反应,沿着雅各布天梯上升到mGGA梯级会得到越来越精确的结果。