Zhang Qing, Dong Shaohua, Cao Guangtao, Hu Guangwei
Opt Lett. 2020 Aug 1;45(15):4140-4143. doi: 10.1364/OL.396626.
Transition metal dichalcogenides (TMDs) promise advanced optoelectronic applications thanks to their visible or near-infrared and layer-dependent bandgaps. Even more exciting phenomena happen via stacking the TMDs to form the vertical heterostructures, such as the exotic interlayer excitons in atomically rearranged bilayer TMDs, as the result of the tunable interlayer hopping of two monolayers. So far, those literature studies focus on either two-dimensional (2D) TMDs or the layered bulky three-dimensional (3D) TMDs. The mixed-dimensional TMDs remain a fundamental yet not fully appreciated curiosity. In this Letter, we have theoretically and numerically investigated the exciton polaritons in such a hybrid system composed by the nanostructured layered (3D) and monolayer (2D) TMDs. The strong coupling has been observed of the lattice mode in high index patterned 3D TMDs and exciton from the direct bandgaps of the 2D TMDs, with the tunable Rabi splitting by geometrically shaping the 3D TMDs. We believe that our mixed-dimensional system with the novel stacks of 2D/3D van der Waals heterostructures may allow for controlling the exciton transport for advanced quantum, polaritonic, and optoelectronic devices.
过渡金属二硫属化物(TMDs)因其可见或近红外以及与层数相关的带隙而有望应用于先进的光电器件。通过堆叠TMDs形成垂直异质结构会出现更令人兴奋的现象,例如原子重排双层TMDs中的奇异层间激子,这是两个单层可调层间跃迁的结果。到目前为止,那些文献研究要么聚焦于二维(2D)TMDs,要么聚焦于层状块状三维(3D)TMDs。混合维度的TMDs仍然是一个基本但尚未得到充分认识的研究对象。在本信函中,我们从理论和数值上研究了由纳米结构化层状(3D)和单层(2D)TMDs组成的这种混合系统中的激子极化激元。在高折射率图案化的3D TMDs中的晶格模式与2D TMDs直接带隙中的激子之间观察到了强耦合,并且通过对3D TMDs进行几何形状塑造可实现可调的拉比分裂。我们相信,我们具有2D/3D范德华异质结构新颖堆叠的混合维度系统可能有助于控制用于先进量子、极化激元和光电器件的激子输运。