Suppr超能文献

诊断光谱细胞学法揭示了无标记表面增强拉曼指纹图谱和化学计量学对宫颈癌病变的差异识别。

Diagnostic spectro-cytology revealing differential recognition of cervical cancer lesions by label-free surface enhanced Raman fingerprints and chemometrics.

机构信息

CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Industrial Estate, Thiruvananthapuram, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

Regional Cancer Centre (RCC), Division of Cancer Research, Thiruvananthapuram, Kerala, India.

出版信息

Nanomedicine. 2020 Oct;29:102276. doi: 10.1016/j.nano.2020.102276. Epub 2020 Jul 29.

Abstract

Herein we have stepped-up on a strategic spectroscopic modality by utilizing label free ultrasensitive surface enhanced Raman scattering (SERS) technique to generate a differential spectral fingerprint for the prediction of normal (NRML), high-grade intraepithelial lesion (HSIL) and cervical squamous cell carcinoma (CSCC) from exfoliated cell samples of cervix. Three different approaches i.e. single-cell, cell-pellet and extracted DNA from oncology clinic as confirmed by Pap test and HPV PCR were employed. Gold nanoparticles as the SERS substrate favored the increment of Raman intensity exhibited signature identity for Amide III/Nucleobases and carotenoid/glycogen respectively for establishing the empirical discrimination. Moreover, all the spectral invention was subjected to chemometrics including Support Vector Machine (SVM) which furnished an average diagnostic accuracy of 94%, 74% and 92% of the three grades. Combined SERS read-out and machine learning technique in field trial promises its potential to reduce the incidence in low resource countries.

摘要

在此,我们通过利用无标记超灵敏表面增强拉曼散射(SERS)技术,为预测宫颈脱落细胞样本中的正常(NRML)、高级上皮内病变(HSIL)和宫颈鳞状细胞癌(CSCC),采用了一种新的光谱学方法。这项研究采用了三种不同的方法,即单细胞、细胞沉淀和从肿瘤诊所提取的 DNA,这些方法都经过巴氏涂片检查和 HPV PCR 证实。金纳米粒子作为 SERS 基底,有利于 Raman 强度的增加,分别表现出酰胺 III/核苷和类胡萝卜素/糖原的特征身份,从而建立经验性的区分。此外,所有的光谱发明都经过了化学计量学的处理,包括支持向量机(SVM),为这三个等级提供了平均诊断准确率为 94%、74%和 92%。在现场试验中,SERS 读出和机器学习技术的结合有望降低低资源国家的发病率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验